Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
class TPS_SpatialTransformerNetwork(nn.Module): | |
""" Rectification Network of RARE, namely TPS based STN """ | |
def __init__(self, F, I_size, I_r_size, I_channel_num=1): | |
""" Based on RARE TPS | |
input: | |
batch_I: Batch Input Image [batch_size x I_channel_num x I_height x I_width] | |
I_size : (height, width) of the input image I | |
I_r_size : (height, width) of the rectified image I_r | |
I_channel_num : the number of channels of the input image I | |
output: | |
batch_I_r: rectified image [batch_size x I_channel_num x I_r_height x I_r_width] | |
""" | |
super(TPS_SpatialTransformerNetwork, self).__init__() | |
self.F = F | |
self.I_size = I_size | |
self.I_r_size = I_r_size # = (I_r_height, I_r_width) | |
self.I_channel_num = I_channel_num | |
self.LocalizationNetwork = LocalizationNetwork(self.F, self.I_channel_num) | |
self.GridGenerator = GridGenerator(self.F, self.I_r_size) | |
def forward(self, batch_I): | |
batch_C_prime = self.LocalizationNetwork(batch_I) # batch_size x K x 2 | |
build_P_prime = self.GridGenerator.build_P_prime(batch_C_prime) # batch_size x n (= I_r_width x I_r_height) x 2 | |
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.size(0), self.I_r_size[0], self.I_r_size[1], 2]) | |
if torch.__version__ > "1.2.0": | |
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border', align_corners=True) | |
else: | |
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border') | |
return batch_I_r | |
class LocalizationNetwork(nn.Module): | |
""" Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """ | |
def __init__(self, F, I_channel_num): | |
super(LocalizationNetwork, self).__init__() | |
self.F = F | |
self.I_channel_num = I_channel_num | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1, | |
bias=False), nn.BatchNorm2d(64), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # batch_size x 64 x I_height/2 x I_width/2 | |
nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # batch_size x 128 x I_height/4 x I_width/4 | |
nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True), | |
nn.MaxPool2d(2, 2), # batch_size x 256 x I_height/8 x I_width/8 | |
nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True), | |
nn.AdaptiveAvgPool2d(1) # batch_size x 512 | |
) | |
self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True)) | |
self.localization_fc2 = nn.Linear(256, self.F * 2) | |
# Init fc2 in LocalizationNetwork | |
self.localization_fc2.weight.data.fill_(0) | |
""" see RARE paper Fig. 6 (a) """ | |
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) | |
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2)) | |
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2)) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1) | |
def forward(self, batch_I): | |
""" | |
input: batch_I : Batch Input Image [batch_size x I_channel_num x I_height x I_width] | |
output: batch_C_prime : Predicted coordinates of fiducial points for input batch [batch_size x F x 2] | |
""" | |
batch_size = batch_I.size(0) | |
features = self.conv(batch_I).view(batch_size, -1) | |
batch_C_prime = self.localization_fc2(self.localization_fc1(features)).view(batch_size, self.F, 2) | |
return batch_C_prime | |
class GridGenerator(nn.Module): | |
""" Grid Generator of RARE, which produces P_prime by multipling T with P """ | |
def __init__(self, F, I_r_size): | |
""" Generate P_hat and inv_delta_C for later """ | |
super(GridGenerator, self).__init__() | |
self.eps = 1e-6 | |
self.I_r_height, self.I_r_width = I_r_size | |
self.F = F | |
self.C = self._build_C(self.F) # F x 2 | |
self.P = self._build_P(self.I_r_width, self.I_r_height) | |
## for multi-gpu, you need register buffer | |
self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.F, self.C)).float()) # F+3 x F+3 | |
self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float()) # n x F+3 | |
## for fine-tuning with different image width, you may use below instead of self.register_buffer | |
#self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.F, self.C)).float().cuda() # F+3 x F+3 | |
#self.P_hat = torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float().cuda() # n x F+3 | |
def _build_C(self, F): | |
""" Return coordinates of fiducial points in I_r; C """ | |
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) | |
ctrl_pts_y_top = -1 * np.ones(int(F / 2)) | |
ctrl_pts_y_bottom = np.ones(int(F / 2)) | |
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) | |
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) | |
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) | |
return C # F x 2 | |
def _build_inv_delta_C(self, F, C): | |
""" Return inv_delta_C which is needed to calculate T """ | |
hat_C = np.zeros((F, F), dtype=float) # F x F | |
for i in range(0, F): | |
for j in range(i, F): | |
r = np.linalg.norm(C[i] - C[j]) | |
hat_C[i, j] = r | |
hat_C[j, i] = r | |
np.fill_diagonal(hat_C, 1) | |
hat_C = (hat_C ** 2) * np.log(hat_C) | |
# print(C.shape, hat_C.shape) | |
delta_C = np.concatenate( # F+3 x F+3 | |
[ | |
np.concatenate([np.ones((F, 1)), C, hat_C], axis=1), # F x F+3 | |
np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1), # 2 x F+3 | |
np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1) # 1 x F+3 | |
], | |
axis=0 | |
) | |
inv_delta_C = np.linalg.inv(delta_C) | |
return inv_delta_C # F+3 x F+3 | |
def _build_P(self, I_r_width, I_r_height): | |
I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width # self.I_r_width | |
I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height # self.I_r_height | |
P = np.stack( # self.I_r_width x self.I_r_height x 2 | |
np.meshgrid(I_r_grid_x, I_r_grid_y), | |
axis=2 | |
) | |
return P.reshape([-1, 2]) # n (= self.I_r_width x self.I_r_height) x 2 | |
def _build_P_hat(self, F, C, P): | |
n = P.shape[0] # n (= self.I_r_width x self.I_r_height) | |
P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1)) # n x 2 -> n x 1 x 2 -> n x F x 2 | |
C_tile = np.expand_dims(C, axis=0) # 1 x F x 2 | |
P_diff = P_tile - C_tile # n x F x 2 | |
rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False) # n x F | |
rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps)) # n x F | |
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1) | |
return P_hat # n x F+3 | |
def build_P_prime(self, batch_C_prime): | |
""" Generate Grid from batch_C_prime [batch_size x F x 2] """ | |
batch_size = batch_C_prime.size(0) | |
batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1) | |
batch_P_hat = self.P_hat.repeat(batch_size, 1, 1) | |
batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros( | |
batch_size, 3, 2).float().to(device)), dim=1) # batch_size x F+3 x 2 | |
batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x F+3 x 2 | |
batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2 | |
return batch_P_prime # batch_size x n x 2 | |