Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import re | |
import six | |
import math | |
import lmdb | |
import torch | |
from natsort import natsorted | |
from PIL import Image | |
import numpy as np | |
from torch.utils.data import Dataset, ConcatDataset, Subset | |
from torch._utils import _accumulate | |
import torchvision.transforms as transforms | |
class Batch_Balanced_Dataset(object): | |
def __init__(self, opt): | |
""" | |
Modulate the data ratio in the batch. | |
For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5", | |
the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST. | |
""" | |
log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a') | |
dashed_line = '-' * 80 | |
print(dashed_line) | |
log.write(dashed_line + '\n') | |
print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}') | |
log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n') | |
assert len(opt.select_data) == len(opt.batch_ratio) | |
_AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) | |
self.data_loader_list = [] | |
self.dataloader_iter_list = [] | |
batch_size_list = [] | |
Total_batch_size = 0 | |
for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio): | |
_batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1) | |
print(dashed_line) | |
log.write(dashed_line + '\n') | |
_dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, select_data=[selected_d]) | |
total_number_dataset = len(_dataset) | |
log.write(_dataset_log) | |
""" | |
The total number of data can be modified with opt.total_data_usage_ratio. | |
ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage. | |
See 4.2 section in our paper. | |
""" | |
number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio)) | |
dataset_split = [number_dataset, total_number_dataset - number_dataset] | |
indices = range(total_number_dataset) | |
_dataset, _ = [Subset(_dataset, indices[offset - length:offset]) | |
for offset, length in zip(_accumulate(dataset_split), dataset_split)] | |
selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n' | |
selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}' | |
print(selected_d_log) | |
log.write(selected_d_log + '\n') | |
batch_size_list.append(str(_batch_size)) | |
Total_batch_size += _batch_size | |
_data_loader = torch.utils.data.DataLoader( | |
_dataset, batch_size=_batch_size, | |
shuffle=True, | |
num_workers=int(opt.workers), | |
collate_fn=_AlignCollate, pin_memory=True) | |
self.data_loader_list.append(_data_loader) | |
self.dataloader_iter_list.append(iter(_data_loader)) | |
Total_batch_size_log = f'{dashed_line}\n' | |
batch_size_sum = '+'.join(batch_size_list) | |
Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n' | |
Total_batch_size_log += f'{dashed_line}' | |
opt.batch_size = Total_batch_size | |
print(Total_batch_size_log) | |
log.write(Total_batch_size_log + '\n') | |
log.close() | |
def get_batch(self): | |
balanced_batch_images = [] | |
balanced_batch_texts = [] | |
for i, data_loader_iter in enumerate(self.dataloader_iter_list): | |
try: | |
image, text = next(data_loader_iter) | |
balanced_batch_images.append(image) | |
balanced_batch_texts += text | |
except StopIteration: | |
self.dataloader_iter_list[i] = iter(self.data_loader_list[i]) | |
image, text = next(self.dataloader_iter_list[i]) | |
balanced_batch_images.append(image) | |
balanced_batch_texts += text | |
except ValueError: | |
pass | |
balanced_batch_images = torch.cat(balanced_batch_images, 0) | |
return balanced_batch_images, balanced_batch_texts | |
def hierarchical_dataset(root, opt, select_data='/'): | |
""" select_data='/' contains all sub-directory of root directory """ | |
dataset_list = [] | |
dataset_log = f'dataset_root: {root}\t dataset: {select_data[0]}' | |
print(dataset_log) | |
dataset_log += '\n' | |
for dirpath, dirnames, filenames in os.walk(root+'/'): | |
if not dirnames: | |
select_flag = False | |
for selected_d in select_data: | |
if selected_d in dirpath: | |
select_flag = True | |
break | |
if select_flag: | |
dataset = LmdbDataset(dirpath, opt) | |
sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}' | |
print(sub_dataset_log) | |
dataset_log += f'{sub_dataset_log}\n' | |
dataset_list.append(dataset) | |
concatenated_dataset = ConcatDataset(dataset_list) | |
return concatenated_dataset, dataset_log | |
class LmdbDataset(Dataset): | |
def __init__(self, root, opt): | |
self.root = root | |
self.opt = opt | |
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False) | |
if not self.env: | |
print('cannot create lmdb from %s' % (root)) | |
sys.exit(0) | |
with self.env.begin(write=False) as txn: | |
nSamples = int(txn.get('num-samples'.encode())) | |
self.nSamples = nSamples | |
if self.opt.data_filtering_off: | |
# for fast check or benchmark evaluation with no filtering | |
self.filtered_index_list = [index + 1 for index in range(self.nSamples)] | |
else: | |
""" Filtering part | |
If you want to evaluate IC15-2077 & CUTE datasets which have special character labels, | |
use --data_filtering_off and only evaluate on alphabets and digits. | |
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192 | |
And if you want to evaluate them with the model trained with --sensitive option, | |
use --sensitive and --data_filtering_off, | |
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144 | |
""" | |
self.filtered_index_list = [] | |
for index in range(self.nSamples): | |
index += 1 # lmdb starts with 1 | |
label_key = 'label-%09d'.encode() % index | |
label = txn.get(label_key).decode('utf-8') | |
if len(label) > self.opt.batch_max_length: | |
# print(f'The length of the label is longer than max_length: length | |
# {len(label)}, {label} in dataset {self.root}') | |
continue | |
# By default, images containing characters which are not in opt.character are filtered. | |
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering. | |
out_of_char = f'[^{self.opt.character}]' | |
if re.search(out_of_char, label.lower()): | |
continue | |
self.filtered_index_list.append(index) | |
self.nSamples = len(self.filtered_index_list) | |
def __len__(self): | |
return self.nSamples | |
def __getitem__(self, index): | |
assert index <= len(self), 'index range error' | |
index = self.filtered_index_list[index] | |
with self.env.begin(write=False) as txn: | |
label_key = 'label-%09d'.encode() % index | |
label = txn.get(label_key).decode('utf-8') | |
img_key = 'image-%09d'.encode() % index | |
imgbuf = txn.get(img_key) | |
buf = six.BytesIO() | |
buf.write(imgbuf) | |
buf.seek(0) | |
try: | |
if self.opt.rgb: | |
img = Image.open(buf).convert('RGB') # for color image | |
else: | |
img = Image.open(buf).convert('L') | |
except IOError: | |
print(f'Corrupted image for {index}') | |
# make dummy image and dummy label for corrupted image. | |
if self.opt.rgb: | |
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) | |
else: | |
img = Image.new('L', (self.opt.imgW, self.opt.imgH)) | |
label = '[dummy_label]' | |
if not self.opt.sensitive: | |
label = label.lower() | |
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py) | |
out_of_char = f'[^{self.opt.character}]' | |
label = re.sub(out_of_char, '', label) | |
return (img, label) | |
class RawDataset(Dataset): | |
def __init__(self, root, opt): | |
self.opt = opt | |
self.image_path_list = [] | |
for dirpath, dirnames, filenames in os.walk(root): | |
for name in filenames: | |
_, ext = os.path.splitext(name) | |
ext = ext.lower() | |
if ext == '.jpg' or ext == '.jpeg' or ext == '.png': | |
self.image_path_list.append(os.path.join(dirpath, name)) | |
self.image_path_list = natsorted(self.image_path_list) | |
self.nSamples = len(self.image_path_list) | |
def __len__(self): | |
return self.nSamples | |
def __getitem__(self, index): | |
try: | |
if self.opt.rgb: | |
img = Image.open(self.image_path_list[index]).convert('RGB') # for color image | |
else: | |
img = Image.open(self.image_path_list[index]).convert('L') | |
except IOError: | |
print(f'Corrupted image for {index}') | |
# make dummy image and dummy label for corrupted image. | |
if self.opt.rgb: | |
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) | |
else: | |
img = Image.new('L', (self.opt.imgW, self.opt.imgH)) | |
return (img, self.image_path_list[index]) | |
class ResizeNormalize(object): | |
def __init__(self, size, interpolation=Image.BICUBIC): | |
self.size = size | |
self.interpolation = interpolation | |
self.toTensor = transforms.ToTensor() | |
def __call__(self, img): | |
img = img.resize(self.size, self.interpolation) | |
img = self.toTensor(img) | |
img.sub_(0.5).div_(0.5) | |
return img | |
class NormalizePAD(object): | |
def __init__(self, max_size, PAD_type='right'): | |
self.toTensor = transforms.ToTensor() | |
self.max_size = max_size | |
self.max_width_half = math.floor(max_size[2] / 2) | |
self.PAD_type = PAD_type | |
def __call__(self, img): | |
img = self.toTensor(img) | |
img.sub_(0.5).div_(0.5) | |
c, h, w = img.size() | |
Pad_img = torch.FloatTensor(*self.max_size).fill_(0) | |
Pad_img[:, :, :w] = img # right pad | |
if self.max_size[2] != w: # add border Pad | |
Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w) | |
return Pad_img | |
class AlignCollate(object): | |
def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False): | |
self.imgH = imgH | |
self.imgW = imgW | |
self.keep_ratio_with_pad = keep_ratio_with_pad | |
def __call__(self, batch): | |
batch = filter(lambda x: x is not None, batch) | |
images, labels = zip(*batch) | |
if self.keep_ratio_with_pad: # same concept with 'Rosetta' paper | |
resized_max_w = self.imgW | |
input_channel = 3 if images[0].mode == 'RGB' else 1 | |
transform = NormalizePAD((input_channel, self.imgH, resized_max_w)) | |
resized_images = [] | |
for image in images: | |
w, h = image.size | |
ratio = w / float(h) | |
if math.ceil(self.imgH * ratio) > self.imgW: | |
resized_w = self.imgW | |
else: | |
resized_w = math.ceil(self.imgH * ratio) | |
resized_image = image.resize((resized_w, self.imgH), Image.BICUBIC) | |
resized_images.append(transform(resized_image)) | |
# resized_image.save('./image_test/%d_test.jpg' % w) | |
image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0) | |
else: | |
transform = ResizeNormalize((self.imgW, self.imgH)) | |
image_tensors = [transform(image) for image in images] | |
image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0) | |
return image_tensors, labels | |
def tensor2im(image_tensor, imtype=np.uint8): | |
image_numpy = image_tensor.cpu().float().numpy() | |
if image_numpy.shape[0] == 1: | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 | |
return image_numpy.astype(imtype) | |
def save_image(image_numpy, image_path): | |
image_pil = Image.fromarray(image_numpy) | |
image_pil.save(image_path) | |