Spaces:
Build error
Build error
Upload image_vectorizer_clip.py
Browse files- image_vectorizer_clip.py +76 -0
image_vectorizer_clip.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
import urllib.request
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
from pathlib import Path
|
9 |
+
from multiprocessing.dummy import Pool
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers import CLIPProcessor, CLIPModel
|
12 |
+
from PIL import Image, ImageFile
|
13 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
14 |
+
|
15 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
17 |
+
|
18 |
+
|
19 |
+
def compute_image_embeddings(list_of_images):
|
20 |
+
return model.get_image_features(
|
21 |
+
**processor(images=list_of_images, return_tensors="pt", padding=True)
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def load_image(path, same_height=False):
|
26 |
+
im = Image.open(path)
|
27 |
+
if im.mode != 'RGB':
|
28 |
+
im = im.convert('RGB')
|
29 |
+
if same_height:
|
30 |
+
ratio = 224 / im.size[1]
|
31 |
+
else:
|
32 |
+
ratio = 224 / min(im.size)
|
33 |
+
return im.resize((int(im.size[0] * ratio), int(im.size[1] * ratio)))
|
34 |
+
|
35 |
+
|
36 |
+
def main():
|
37 |
+
embeddings = None
|
38 |
+
rows = [["id", "label", "thumbnail"]]
|
39 |
+
total = sum(1 for _ in Path("./vectors_20211011").rglob("**/*.jpg"))
|
40 |
+
images_path = Path("./vectors_20211011").rglob("**/*.jpg")
|
41 |
+
for i, image_path in enumerate(tqdm(images_path, total=total)):
|
42 |
+
embedding = compute_image_embeddings(
|
43 |
+
[load_image(image_path)]
|
44 |
+
).detach().numpy()[0]
|
45 |
+
if embeddings is None:
|
46 |
+
embeddings = embedding
|
47 |
+
else:
|
48 |
+
embeddings = np.vstack([embeddings, embedding])
|
49 |
+
filename = image_path.as_posix()
|
50 |
+
record_path = (filename
|
51 |
+
.replace("vectors", "records")
|
52 |
+
.replace(".jpg", ".json")
|
53 |
+
)
|
54 |
+
with open(record_path) as record_file:
|
55 |
+
record = json.load(record_file)
|
56 |
+
rows.append([
|
57 |
+
image_path.stem,
|
58 |
+
record["metadata"]["title"],
|
59 |
+
record["_links"]["thumbnail_large"]["href"]
|
60 |
+
])
|
61 |
+
if i and i % 1000 == 0:
|
62 |
+
with open("clip.csv", "w") as clip_file:
|
63 |
+
writer = csv.writer(clip_file)
|
64 |
+
for row in tqdm(rows, desc="Writing rows and embeddings"):
|
65 |
+
writer.writerow(row)
|
66 |
+
np.save("clip.npy", embeddings)
|
67 |
+
|
68 |
+
with open("clip.csv", "w") as clip_file:
|
69 |
+
writer = csv.writer(clip_file)
|
70 |
+
for row in tqdm(rows, desc="Writing rows and embeddings"):
|
71 |
+
writer.writerow(row)
|
72 |
+
np.save("clip.npy", embeddings)
|
73 |
+
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
main()
|