Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import os | |
import pathlib | |
import tempfile | |
import gradio as gr | |
import torch | |
import torchaudio | |
from fairseq2.assets import InProcAssetMetadataProvider, asset_store | |
from fairseq2.data import Collater, SequenceData, VocabularyInfo | |
from fairseq2.data.audio import ( | |
AudioDecoder, | |
WaveformToFbankConverter, | |
WaveformToFbankOutput, | |
) | |
from seamless_communication.inference import SequenceGeneratorOptions | |
from fairseq2.generation import NGramRepeatBlockProcessor | |
from fairseq2.memory import MemoryBlock | |
from fairseq2.typing import DataType, Device | |
from huggingface_hub import snapshot_download | |
from seamless_communication.inference import BatchedSpeechOutput, Translator, SequenceGeneratorOptions | |
from seamless_communication.models.generator.loader import load_pretssel_vocoder_model | |
from seamless_communication.models.unity import ( | |
UnitTokenizer, | |
load_gcmvn_stats, | |
load_unity_text_tokenizer, | |
load_unity_unit_tokenizer, | |
) | |
from torch.nn import Module | |
from seamless_communication.cli.expressivity.evaluate.pretssel_inference_helper import PretsselGenerator | |
from utils import LANGUAGE_CODE_TO_NAME | |
DESCRIPTION = """\ | |
# Seamless Expressive | |
[SeamlessExpressive](https://github.com/facebookresearch/seamless_communication) is a speech-to-speech translation model that captures certain underexplored aspects of prosody such as speech rate and pauses, while preserving the style of one's voice and high content translation quality. | |
""" | |
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available() | |
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models")) | |
if not CHECKPOINTS_PATH.exists(): | |
snapshot_download(repo_id="facebook/seamless-expressive", repo_type="model", local_dir=CHECKPOINTS_PATH) | |
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH) | |
# Ensure that we do not have any other environment resolvers and always return | |
# "demo" for demo purposes. | |
asset_store.env_resolvers.clear() | |
asset_store.env_resolvers.append(lambda: "demo") | |
# Construct an `InProcAssetMetadataProvider` with environment-specific metadata | |
# that just overrides the regular metadata for "demo" environment. Note the "@demo" suffix. | |
demo_metadata = [ | |
{ | |
"name": "seamless_expressivity@demo", | |
"checkpoint": f"file://{CHECKPOINTS_PATH}/m2m_expressive_unity.pt", | |
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model", | |
}, | |
{ | |
"name": "vocoder_pretssel@demo", | |
"checkpoint": f"file://{CHECKPOINTS_PATH}/pretssel_melhifigan_wm-final.pt", | |
}, | |
{ | |
"name": "seamlessM4T_v2_large@demo", | |
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt", | |
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model", | |
}, | |
] | |
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata)) | |
LANGUAGE_NAME_TO_CODE = {v: k for k, v in LANGUAGE_CODE_TO_NAME.items()} | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
dtype = torch.float16 | |
else: | |
device = torch.device("cpu") | |
dtype = torch.float32 | |
MODEL_NAME = "seamless_expressivity" | |
VOCODER_NAME = "vocoder_pretssel" | |
# used for ASR for toxicity | |
m4t_translator = Translator( | |
model_name_or_card="seamlessM4T_v2_large", | |
vocoder_name_or_card=None, | |
device=device, | |
dtype=dtype, | |
) | |
unit_tokenizer = load_unity_unit_tokenizer(MODEL_NAME) | |
_gcmvn_mean, _gcmvn_std = load_gcmvn_stats(VOCODER_NAME) | |
gcmvn_mean = torch.tensor(_gcmvn_mean, device=device, dtype=dtype) | |
gcmvn_std = torch.tensor(_gcmvn_std, device=device, dtype=dtype) | |
translator = Translator( | |
MODEL_NAME, | |
vocoder_name_or_card=None, | |
device=device, | |
dtype=dtype, | |
apply_mintox=False, | |
) | |
text_generation_opts = SequenceGeneratorOptions( | |
beam_size=5, | |
unk_penalty=torch.inf, | |
soft_max_seq_len=(0, 200), | |
step_processor=NGramRepeatBlockProcessor( | |
ngram_size=10, | |
), | |
) | |
m4t_text_generation_opts = SequenceGeneratorOptions( | |
beam_size=5, | |
unk_penalty=torch.inf, | |
soft_max_seq_len=(1, 200), | |
step_processor=NGramRepeatBlockProcessor( | |
ngram_size=10, | |
), | |
) | |
pretssel_generator = PretsselGenerator( | |
VOCODER_NAME, | |
vocab_info=unit_tokenizer.vocab_info, | |
device=device, | |
dtype=dtype, | |
) | |
decode_audio = AudioDecoder(dtype=torch.float32, device=device) | |
convert_to_fbank = WaveformToFbankConverter( | |
num_mel_bins=80, | |
waveform_scale=2**15, | |
channel_last=True, | |
standardize=False, | |
device=device, | |
dtype=dtype, | |
) | |
def normalize_fbank(data: WaveformToFbankOutput) -> WaveformToFbankOutput: | |
fbank = data["fbank"] | |
std, mean = torch.std_mean(fbank, dim=0) | |
data["fbank"] = fbank.subtract(mean).divide(std) | |
data["gcmvn_fbank"] = fbank.subtract(gcmvn_mean).divide(gcmvn_std) | |
return data | |
collate = Collater(pad_value=0, pad_to_multiple=1) | |
AUDIO_SAMPLE_RATE = 16000 | |
MAX_INPUT_AUDIO_LENGTH = 10 # in seconds | |
def remove_prosody_tokens_from_text(text): | |
# filter out prosody tokens, there is only emphasis '*', and pause '=' | |
text = text.replace("*", "").replace("=", "") | |
text = " ".join(text.split()) | |
return text | |
def preprocess_audio(input_audio_path: str) -> None: | |
arr, org_sr = torchaudio.load(input_audio_path) | |
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE) | |
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) | |
if new_arr.shape[1] > max_length: | |
new_arr = new_arr[:, :max_length] | |
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.") | |
torchaudio.save(input_audio_path, new_arr, sample_rate=AUDIO_SAMPLE_RATE) | |
def run( | |
input_audio_path: str, | |
source_language: str, | |
target_language: str, | |
) -> tuple[str, str]: | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] | |
preprocess_audio(input_audio_path) | |
with pathlib.Path(input_audio_path).open("rb") as fb: | |
block = MemoryBlock(fb.read()) | |
example = decode_audio(block) | |
example = convert_to_fbank(example) | |
example = normalize_fbank(example) | |
example = collate(example) | |
# get transcription for mintox | |
source_sentences, _ = m4t_translator.predict( | |
input=example["fbank"], | |
task_str="S2TT", # get source text | |
tgt_lang=source_language_code, | |
text_generation_opts=m4t_text_generation_opts, | |
) | |
source_text = str(source_sentences[0]) | |
prosody_encoder_input = example["gcmvn_fbank"] | |
text_output, unit_output = translator.predict( | |
example["fbank"], | |
"S2ST", | |
tgt_lang=target_language_code, | |
src_lang=source_language_code, | |
text_generation_opts=text_generation_opts, | |
unit_generation_ngram_filtering=False, | |
duration_factor=1.0, | |
prosody_encoder_input=prosody_encoder_input, | |
src_text=source_text, # for mintox check | |
) | |
speech_output = pretssel_generator.predict( | |
unit_output.units, | |
tgt_lang=target_language_code, | |
prosody_encoder_input=prosody_encoder_input, | |
) | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f: | |
torchaudio.save( | |
f.name, | |
speech_output.audio_wavs[0][0].to(torch.float32).cpu(), | |
sample_rate=speech_output.sample_rate, | |
) | |
text_out = remove_prosody_tokens_from_text(str(text_output[0])) | |
return f.name, text_out | |
TARGET_LANGUAGE_NAMES = [ | |
"English", | |
"French", | |
"German", | |
"Spanish", | |
] | |
UPDATED_LANGUAGE_LIST = { | |
"English": ["French", "German", "Spanish"], | |
"French": ["English", "German", "Spanish"], | |
"German": ["English", "French", "Spanish"], | |
"Spanish": ["English", "French", "German"], | |
} | |
def rs_change(rs): | |
return gr.update( | |
choices=UPDATED_LANGUAGE_LIST[rs], | |
value=UPDATED_LANGUAGE_LIST[rs][0], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_audio = gr.Audio(label="Input speech", type="filepath") | |
source_language = gr.Dropdown( | |
label="Source language", | |
choices=TARGET_LANGUAGE_NAMES, | |
value="English", | |
) | |
target_language = gr.Dropdown( | |
label="Target language", | |
choices=TARGET_LANGUAGE_NAMES, | |
value="French", | |
interactive=True, | |
) | |
source_language.change( | |
fn=rs_change, | |
inputs=[source_language], | |
outputs=[target_language], | |
) | |
btn = gr.Button() | |
with gr.Column(): | |
with gr.Group(): | |
output_audio = gr.Audio(label="Translated speech") | |
output_text = gr.Textbox(label="Translated text") | |
gr.Examples( | |
examples=[ | |
["assets/Excited-Es.wav", "English", "Spanish"], | |
["assets/FastTalking-En.wav", "French", "English"], | |
["assets/Sad-Es.wav", "English", "Spanish"], | |
], | |
inputs=[input_audio, source_language, target_language], | |
outputs=[output_audio, output_text], | |
fn=run, | |
cache_examples=CACHE_EXAMPLES, | |
api_name=False, | |
) | |
btn.click( | |
fn=run, | |
inputs=[input_audio, source_language, target_language], | |
outputs=[output_audio, output_text], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=50).launch() | |