Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gpt import GPTLanguageModel
|
3 |
+
import torch
|
4 |
+
import config as cfg
|
5 |
+
|
6 |
+
torch.manual_seed(1337)
|
7 |
+
|
8 |
+
|
9 |
+
with open('input.txt', 'r', encoding='utf-8') as f:
|
10 |
+
text = f.read()
|
11 |
+
|
12 |
+
|
13 |
+
chars = sorted(list(set(text)))
|
14 |
+
vocab_size = len(chars)
|
15 |
+
|
16 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
17 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
18 |
+
encode = lambda s: [stoi[c] for c in s]
|
19 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
20 |
+
|
21 |
+
model = GPTLanguageModel(vocab_size)
|
22 |
+
model.load_state_dict(torch.load('saved_model.pth', map_location=cfg.device))
|
23 |
+
m = model.to(cfg.device)
|
24 |
+
|
25 |
+
def inference(input_text, count):
|
26 |
+
encoded_text = [encode(input_text)]
|
27 |
+
count = int(count)
|
28 |
+
context = torch.tensor(encoded_text, dtype=torch.long, device=cfg.device)
|
29 |
+
|
30 |
+
out_text = decode(m.generate(context, max_new_tokens=count)[0].tolist())
|
31 |
+
return out_text
|
32 |
+
|
33 |
+
title = "ERAV1 Session 21: Training GPT from scratch"
|
34 |
+
|
35 |
+
|
36 |
+
demo = gr.Interface(
|
37 |
+
inference,
|
38 |
+
inputs = [gr.Textbox(label="Text", placeholder="Enter text"), gr.Textbox(label="Tokens", placeholder="Enter number of tokens to be generated")],
|
39 |
+
outputs = [gr.Textbox(label="Generated text")],
|
40 |
+
title = title
|
41 |
+
)
|
42 |
+
|
43 |
+
demo.launch()
|