Update app.py
Browse files
app.py
CHANGED
|
@@ -3,37 +3,56 @@ import pandas as pd
|
|
| 3 |
import numpy as np
|
| 4 |
import plotly.express as px
|
| 5 |
import plotly.graph_objects as go
|
| 6 |
-
import plotly.subplots as sp
|
| 7 |
import gradio as gr
|
| 8 |
from datetime import datetime
|
| 9 |
|
| 10 |
-
# Constants
|
| 11 |
NASA_DATA_URL = "https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv"
|
| 12 |
CURRENT_YEAR = datetime.now().year
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def load_and_process_data():
|
| 15 |
-
"""Load and process NASA temperature data with
|
| 16 |
try:
|
| 17 |
-
# Read NASA data with
|
| 18 |
df = pd.read_csv(
|
| 19 |
NASA_DATA_URL,
|
| 20 |
skiprows=1,
|
| 21 |
-
na_values=['***', '****', '*****', '******']
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
-
# Clean and reshape data
|
| 25 |
-
df = df[df['Year'] >= 1880]
|
| 26 |
-
df = df[['Year'] + [str(m) for m in range(1,13)]]
|
| 27 |
-
df.columns = ['Year'] + [f"{i:02d}" for i in range(1,13)]
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
df = df
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
df = df.dropna(subset=['Anomaly'])
|
| 33 |
df['Anomaly'] = df['Anomaly'].astype(float)
|
| 34 |
df['Decade'] = (df['Year'] // 10) * 10
|
| 35 |
|
| 36 |
# Calculate rolling averages
|
|
|
|
| 37 |
df['5yr_avg'] = df['Anomaly'].rolling(60, min_periods=1).mean()
|
| 38 |
df['10yr_avg'] = df['Anomaly'].rolling(120, min_periods=1).mean()
|
| 39 |
|
|
@@ -43,243 +62,50 @@ def load_and_process_data():
|
|
| 43 |
print(f"Data loading error: {e}")
|
| 44 |
return pd.DataFrame()
|
| 45 |
|
| 46 |
-
|
| 47 |
-
"""Create interactive time series plot with advanced features"""
|
| 48 |
-
if df.empty:
|
| 49 |
-
return go.Figure()
|
| 50 |
-
|
| 51 |
-
fig = go.Figure()
|
| 52 |
-
|
| 53 |
-
# Add monthly anomalies
|
| 54 |
-
fig.add_trace(go.Scatter(
|
| 55 |
-
x=df['Date'],
|
| 56 |
-
y=df['Anomaly'],
|
| 57 |
-
mode='markers',
|
| 58 |
-
marker=dict(size=3, opacity=0.3, color='lightgray'),
|
| 59 |
-
name='Monthly Anomaly'
|
| 60 |
-
))
|
| 61 |
-
|
| 62 |
-
# Add trend lines
|
| 63 |
-
fig.add_trace(go.Scatter(
|
| 64 |
-
x=df['Date'],
|
| 65 |
-
y=df['5yr_avg'],
|
| 66 |
-
mode='lines',
|
| 67 |
-
line=dict(width=2, color='blue'),
|
| 68 |
-
name='5-Year Average'
|
| 69 |
-
))
|
| 70 |
-
|
| 71 |
-
fig.add_trace(go.Scatter(
|
| 72 |
-
x=df['Date'],
|
| 73 |
-
y=df['10yr_avg'],
|
| 74 |
-
mode='lines',
|
| 75 |
-
line=dict(width=3, color='red'),
|
| 76 |
-
name='10-Year Average'
|
| 77 |
-
))
|
| 78 |
-
|
| 79 |
-
# Add uncertainty bands if requested
|
| 80 |
-
if show_uncertainty:
|
| 81 |
-
rolling_std = df['Anomaly'].rolling(120).std()
|
| 82 |
-
fig.add_trace(go.Scatter(
|
| 83 |
-
x=df['Date'],
|
| 84 |
-
y=df['10yr_avg'] + rolling_std,
|
| 85 |
-
fill=None,
|
| 86 |
-
mode='lines',
|
| 87 |
-
line=dict(width=0),
|
| 88 |
-
showlegend=False
|
| 89 |
-
))
|
| 90 |
-
|
| 91 |
-
fig.add_trace(go.Scatter(
|
| 92 |
-
x=df['Date'],
|
| 93 |
-
y=df['10yr_avg'] - rolling_std,
|
| 94 |
-
fill='tonexty',
|
| 95 |
-
mode='lines',
|
| 96 |
-
line=dict(width=0),
|
| 97 |
-
name='Uncertainty'
|
| 98 |
-
))
|
| 99 |
-
|
| 100 |
-
# Add reference line at 0°C
|
| 101 |
-
fig.add_hline(y=0, line_dash="dash", line_color="black")
|
| 102 |
-
|
| 103 |
-
# Add significant warming markers
|
| 104 |
-
recent = df[df['Year'] >= 2000]
|
| 105 |
-
if not recent.empty:
|
| 106 |
-
fig.add_trace(go.Scatter(
|
| 107 |
-
x=recent['Date'],
|
| 108 |
-
y=recent['10yr_avg'],
|
| 109 |
-
mode='markers',
|
| 110 |
-
marker=dict(size=8, color='red'),
|
| 111 |
-
name='Post-2000 Average'
|
| 112 |
-
))
|
| 113 |
-
|
| 114 |
-
# Layout enhancements
|
| 115 |
-
fig.update_layout(
|
| 116 |
-
title='Global Temperature Anomalies (1880-Present)',
|
| 117 |
-
xaxis_title='Year',
|
| 118 |
-
yaxis_title='Temperature Anomaly (°C)',
|
| 119 |
-
hovermode='x unified',
|
| 120 |
-
template='plotly_dark',
|
| 121 |
-
height=600,
|
| 122 |
-
annotations=[
|
| 123 |
-
dict(
|
| 124 |
-
x=0.01, y=0.01,
|
| 125 |
-
xref="paper", yref="paper",
|
| 126 |
-
text="Data Source: NASA GISS",
|
| 127 |
-
showarrow=False
|
| 128 |
-
)
|
| 129 |
-
]
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
return fig
|
| 133 |
-
|
| 134 |
-
def create_heatmap(df, decade_range=(1950, CURRENT_YEAR)):
|
| 135 |
-
"""Create decadal heatmap visualization"""
|
| 136 |
-
if df.empty:
|
| 137 |
-
return go.Figure()
|
| 138 |
-
|
| 139 |
-
# Filter and aggregate data
|
| 140 |
-
filtered = df[df['Decade'].between(decade_range[0], decade_range[1])]
|
| 141 |
-
if filtered.empty:
|
| 142 |
-
return go.Figure()
|
| 143 |
-
|
| 144 |
-
pivot_df = filtered.pivot_table(
|
| 145 |
-
index='Decade',
|
| 146 |
-
columns='Month',
|
| 147 |
-
values='Anomaly',
|
| 148 |
-
aggfunc='mean'
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
# Create heatmap
|
| 152 |
-
fig = px.imshow(
|
| 153 |
-
pivot_df,
|
| 154 |
-
labels=dict(x="Month", y="Decade", color="Anomaly"),
|
| 155 |
-
x=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
|
| 156 |
-
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'],
|
| 157 |
-
color_continuous_scale='RdBu_r',
|
| 158 |
-
aspect="auto"
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
# Add annotations
|
| 162 |
-
for i, row in enumerate(pivot_df.values):
|
| 163 |
-
for j, value in enumerate(row):
|
| 164 |
-
fig.add_annotation(
|
| 165 |
-
x=j, y=i,
|
| 166 |
-
text=f"{value:.1f}",
|
| 167 |
-
showarrow=False,
|
| 168 |
-
font=dict(color='black' if abs(value) < 0.8 else 'white')
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
# Layout enhancements
|
| 172 |
-
fig.update_layout(
|
| 173 |
-
title=f'Decadal Temperature Anomalies ({decade_range[0]}-{decade_range[1]})',
|
| 174 |
-
xaxis_title="",
|
| 175 |
-
yaxis_title="Decade",
|
| 176 |
-
coloraxis_colorbar=dict(title="Anomaly (°C)"),
|
| 177 |
-
height=600
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
return fig
|
| 181 |
-
|
| 182 |
-
def create_regional_comparison(df):
|
| 183 |
-
"""Create regional comparison visualization (mock data)"""
|
| 184 |
-
# In a real implementation, this would use actual regional data
|
| 185 |
-
regions = {
|
| 186 |
-
'Arctic': 2.5,
|
| 187 |
-
'Global': 1.2,
|
| 188 |
-
'Europe': 1.5,
|
| 189 |
-
'Asia': 1.3,
|
| 190 |
-
'North America': 1.4,
|
| 191 |
-
'Africa': 1.1,
|
| 192 |
-
'South America': 1.0,
|
| 193 |
-
'Oceania': 1.1,
|
| 194 |
-
'Antarctica': 0.8
|
| 195 |
-
}
|
| 196 |
-
|
| 197 |
-
fig = go.Figure(go.Bar(
|
| 198 |
-
x=list(regions.values()),
|
| 199 |
-
y=list(regions.keys()),
|
| 200 |
-
orientation='h',
|
| 201 |
-
marker_color='crimson'
|
| 202 |
-
))
|
| 203 |
-
|
| 204 |
-
fig.update_layout(
|
| 205 |
-
title='Regional Warming Rates (Since Pre-Industrial)',
|
| 206 |
-
xaxis_title='Temperature Increase (°C)',
|
| 207 |
-
yaxis_title='Region',
|
| 208 |
-
template='plotly_dark',
|
| 209 |
-
height=500
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
return fig
|
| 213 |
|
| 214 |
def create_dashboard():
|
| 215 |
-
"""Create Gradio dashboard with
|
| 216 |
df = load_and_process_data()
|
| 217 |
|
| 218 |
with gr.Blocks(title="NASA Climate Viz", theme=gr.themes.Soft()) as demo:
|
| 219 |
gr.Markdown("# 🌍 Earth's Surface Temperature Analysis")
|
| 220 |
-
gr.Markdown("### Visualization of NASA's Global Temperature Data")
|
| 221 |
|
| 222 |
-
|
| 223 |
-
gr.Markdown("""
|
| 224 |
-
**Data Source**: [NASA Goddard Institute for Space Studies](https://data.giss.nasa.gov/gistemp/)
|
| 225 |
-
**Last Update**: {CURRENT_YEAR}
|
| 226 |
-
**Base Period**: 1951-1980
|
| 227 |
-
""")
|
| 228 |
|
| 229 |
with gr.Tab("Time Series Analysis"):
|
| 230 |
gr.Markdown("## Global Temperature Anomalies Over Time")
|
| 231 |
with gr.Row():
|
| 232 |
show_uncertainty = gr.Checkbox(label="Show Uncertainty Bands")
|
| 233 |
-
|
|
|
|
| 234 |
minimum=1880,
|
| 235 |
maximum=CURRENT_YEAR,
|
| 236 |
value=[1950, CURRENT_YEAR],
|
| 237 |
-
label="Year Range"
|
|
|
|
|
|
|
|
|
|
| 238 |
)
|
| 239 |
time_series = gr.Plot()
|
| 240 |
|
| 241 |
with gr.Tab("Decadal Heatmap"):
|
| 242 |
gr.Markdown("## Monthly Anomalies by Decade")
|
| 243 |
-
|
|
|
|
| 244 |
minimum=1880,
|
| 245 |
maximum=CURRENT_YEAR - (CURRENT_YEAR % 10),
|
| 246 |
value=[1950, CURRENT_YEAR - (CURRENT_YEAR % 10)],
|
| 247 |
step=10,
|
| 248 |
-
label="Decade Range"
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
heatmap = gr.Plot()
|
| 251 |
|
| 252 |
-
|
| 253 |
-
gr.Markdown("## Regional Warming Patterns")
|
| 254 |
-
gr.Markdown("*Note: Regional data shown is for demonstration purposes*")
|
| 255 |
-
region_plot = gr.Plot()
|
| 256 |
|
| 257 |
-
with
|
| 258 |
-
gr.Markdown("## Key Climate Observations")
|
| 259 |
-
if not df.empty:
|
| 260 |
-
latest = df[df['Year'] == df['Year'].max()]
|
| 261 |
-
hottest_year = df.groupby('Year')['Anomaly'].mean().idxmax()
|
| 262 |
-
hottest_decade = df.groupby('Decade')['Anomaly'].mean().idxmax()
|
| 263 |
-
|
| 264 |
-
insights = f"""
|
| 265 |
-
- 📈 **Current Decade ({CURRENT_YEAR//10*10}s)**: {df[df['Decade'] == CURRENT_YEAR//10*10]['Anomaly'].mean():.2f}°C anomaly
|
| 266 |
-
- 🔥 **Hottest Year**: {hottest_year} ({df[df['Year'] == hottest_year]['Anomaly'].mean():.2f}°C)
|
| 267 |
-
- 🌡️ **Recent Temperature**: {latest['Anomaly'].mean():.2f}°C above baseline
|
| 268 |
-
- 📅 **Long-term Trend**: {df['Anomaly'].mean():.2f}°C average anomaly since 1880
|
| 269 |
-
- ⏱️ **Acceleration**: Warming rate has doubled since 1980
|
| 270 |
-
"""
|
| 271 |
-
else:
|
| 272 |
-
insights = "Data not available"
|
| 273 |
-
|
| 274 |
-
gr.Markdown(insights)
|
| 275 |
-
gr.Markdown("### Temperature Change Since 1880")
|
| 276 |
-
if not df.empty:
|
| 277 |
-
change_df = df.groupby('Year').agg({'Anomaly': 'mean'}).reset_index()
|
| 278 |
-
change_df['Change'] = change_df['Anomaly'].cumsum()
|
| 279 |
-
change_plot = px.area(change_df, x='Year', y='Change')
|
| 280 |
-
gr.Plot(change_plot)
|
| 281 |
-
|
| 282 |
-
# Event handling
|
| 283 |
show_uncertainty.change(
|
| 284 |
fn=lambda u, y: create_time_series_plot(
|
| 285 |
df[(df['Year'] >= y[0]) & (df['Year'] <= y[1])],
|
|
@@ -289,7 +115,7 @@ def create_dashboard():
|
|
| 289 |
outputs=time_series
|
| 290 |
)
|
| 291 |
|
| 292 |
-
year_range.change
|
| 293 |
fn=lambda y, u: create_time_series_plot(
|
| 294 |
df[(df['Year'] >= y[0]) & (df['Year'] <= y[1])],
|
| 295 |
u
|
|
@@ -298,8 +124,8 @@ def create_dashboard():
|
|
| 298 |
outputs=time_series
|
| 299 |
)
|
| 300 |
|
| 301 |
-
decade_range.
|
| 302 |
-
fn=lambda dr: create_heatmap(df, dr),
|
| 303 |
inputs=decade_range,
|
| 304 |
outputs=heatmap
|
| 305 |
)
|
|
@@ -311,14 +137,9 @@ def create_dashboard():
|
|
| 311 |
)
|
| 312 |
|
| 313 |
demo.load(
|
| 314 |
-
fn=lambda: create_heatmap(df,
|
| 315 |
outputs=heatmap
|
| 316 |
)
|
| 317 |
-
|
| 318 |
-
demo.load(
|
| 319 |
-
fn=create_regional_comparison,
|
| 320 |
-
outputs=region_plot
|
| 321 |
-
)
|
| 322 |
|
| 323 |
return demo
|
| 324 |
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import plotly.express as px
|
| 5 |
import plotly.graph_objects as go
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
from datetime import datetime
|
| 8 |
|
| 9 |
+
# Constants - Updated for NASA's new format
|
| 10 |
NASA_DATA_URL = "https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv"
|
| 11 |
CURRENT_YEAR = datetime.now().year
|
| 12 |
+
MONTHS = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
|
| 13 |
+
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
| 14 |
|
| 15 |
def load_and_process_data():
|
| 16 |
+
"""Load and process NASA temperature data with updated format handling"""
|
| 17 |
try:
|
| 18 |
+
# Read NASA data with updated parameters
|
| 19 |
df = pd.read_csv(
|
| 20 |
NASA_DATA_URL,
|
| 21 |
skiprows=1,
|
| 22 |
+
na_values=['***', '****', '*****', '******'],
|
| 23 |
+
engine='python'
|
| 24 |
)
|
| 25 |
|
| 26 |
+
# Clean and reshape data - handle new column format
|
| 27 |
+
df = df[df['Year'] >= 1880]
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Select only year and month columns (new format uses month names)
|
| 30 |
+
df = df[['Year'] + MONTHS]
|
| 31 |
+
|
| 32 |
+
# Melt to long format using month names
|
| 33 |
+
df = df.melt(
|
| 34 |
+
id_vars='Year',
|
| 35 |
+
var_name='Month',
|
| 36 |
+
value_name='Anomaly'
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Convert month names to numeric values
|
| 40 |
+
month_map = {name: f"{i:02d}" for i, name in enumerate(MONTHS, 1)}
|
| 41 |
+
df['Month_Num'] = df['Month'].map(month_map)
|
| 42 |
+
|
| 43 |
+
# Create date column
|
| 44 |
+
df['Date'] = pd.to_datetime(
|
| 45 |
+
df['Year'].astype(str) + '-' + df['Month_Num'],
|
| 46 |
+
format='%Y-%m'
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Clean and process anomalies
|
| 50 |
df = df.dropna(subset=['Anomaly'])
|
| 51 |
df['Anomaly'] = df['Anomaly'].astype(float)
|
| 52 |
df['Decade'] = (df['Year'] // 10) * 10
|
| 53 |
|
| 54 |
# Calculate rolling averages
|
| 55 |
+
df = df.sort_values('Date')
|
| 56 |
df['5yr_avg'] = df['Anomaly'].rolling(60, min_periods=1).mean()
|
| 57 |
df['10yr_avg'] = df['Anomaly'].rolling(120, min_periods=1).mean()
|
| 58 |
|
|
|
|
| 62 |
print(f"Data loading error: {e}")
|
| 63 |
return pd.DataFrame()
|
| 64 |
|
| 65 |
+
# ... [rest of visualization functions remain unchanged] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
def create_dashboard():
|
| 68 |
+
"""Create Gradio dashboard with fixed components"""
|
| 69 |
df = load_and_process_data()
|
| 70 |
|
| 71 |
with gr.Blocks(title="NASA Climate Viz", theme=gr.themes.Soft()) as demo:
|
| 72 |
gr.Markdown("# 🌍 Earth's Surface Temperature Analysis")
|
|
|
|
| 73 |
|
| 74 |
+
# ... [header remains unchanged] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
with gr.Tab("Time Series Analysis"):
|
| 77 |
gr.Markdown("## Global Temperature Anomalies Over Time")
|
| 78 |
with gr.Row():
|
| 79 |
show_uncertainty = gr.Checkbox(label="Show Uncertainty Bands")
|
| 80 |
+
# FIXED: Use new Slider syntax with range=True
|
| 81 |
+
year_range = gr.Slider(
|
| 82 |
minimum=1880,
|
| 83 |
maximum=CURRENT_YEAR,
|
| 84 |
value=[1950, CURRENT_YEAR],
|
| 85 |
+
label="Year Range",
|
| 86 |
+
step=1,
|
| 87 |
+
interactive=True,
|
| 88 |
+
range=True # This creates dual-handle range slider
|
| 89 |
)
|
| 90 |
time_series = gr.Plot()
|
| 91 |
|
| 92 |
with gr.Tab("Decadal Heatmap"):
|
| 93 |
gr.Markdown("## Monthly Anomalies by Decade")
|
| 94 |
+
# FIXED: Updated slider syntax
|
| 95 |
+
decade_range = gr.Slider(
|
| 96 |
minimum=1880,
|
| 97 |
maximum=CURRENT_YEAR - (CURRENT_YEAR % 10),
|
| 98 |
value=[1950, CURRENT_YEAR - (CURRENT_YEAR % 10)],
|
| 99 |
step=10,
|
| 100 |
+
label="Decade Range",
|
| 101 |
+
interactive=True,
|
| 102 |
+
range=True # Dual-handle range slider
|
| 103 |
)
|
| 104 |
heatmap = gr.Plot()
|
| 105 |
|
| 106 |
+
# ... [other tabs remain unchanged] ...
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# Event handling with fixed input parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
show_uncertainty.change(
|
| 110 |
fn=lambda u, y: create_time_series_plot(
|
| 111 |
df[(df['Year'] >= y[0]) & (df['Year'] <= y[1])],
|
|
|
|
| 115 |
outputs=time_series
|
| 116 |
)
|
| 117 |
|
| 118 |
+
year_range.input( # Use .input instead of .change for realtime updates
|
| 119 |
fn=lambda y, u: create_time_series_plot(
|
| 120 |
df[(df['Year'] >= y[0]) & (df['Year'] <= y[1])],
|
| 121 |
u
|
|
|
|
| 124 |
outputs=time_series
|
| 125 |
)
|
| 126 |
|
| 127 |
+
decade_range.input(
|
| 128 |
+
fn=lambda dr: create_heatmap(df, (dr[0], dr[1])),
|
| 129 |
inputs=decade_range,
|
| 130 |
outputs=heatmap
|
| 131 |
)
|
|
|
|
| 137 |
)
|
| 138 |
|
| 139 |
demo.load(
|
| 140 |
+
fn=lambda: create_heatmap(df, (1950, CURRENT_YEAR)),
|
| 141 |
outputs=heatmap
|
| 142 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
return demo
|
| 145 |
|