aj2614@nyu.edu
who knows if this is a good idea
3d7c786
raw
history blame
1.24 kB
import easyocr as ocr #OCR
import streamlit as st #Web App
from PIL import Image #Image Processing
import numpy as np #Image Processing
#title
st.title("Easy OCR - Extract Text from Images")
#subtitle
st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")
#image uploader
image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg'])
@st.cache
def load_model():
reader = ocr.Reader(['en'],model_storage_directory='.')
return reader
reader = load_model() #load model
if image is not None:
input_image = Image.open(image) #read image
st.image(input_image) #display image
with st.spinner("🤖 AI is at Work! "):
result = reader.readtext(np.array(input_image))
result_text = [] #empty list for results
for text in result:
result_text.append(text[1])
st.write(result_text)
#st.success("Here you go!")
st.balloons()
else:
st.write("Upload an Image")
st.caption("Made with ❤️ by @1littlecoder. Credits to 🤗 Spaces for Hosting this ")