Nymbo's picture
Adding support for custom inference models/LoRAs
289206f verified
raw
history blame
30.7 kB
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
import json
# Project by Nymbo
# Base API URL for Hugging Face inference
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
# Retrieve the API token from environment variables
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# Timeout for requests
timeout = 100
def query(prompt, model, custom_lora, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
# Debug log to indicate function start
print("Starting query function...")
# Print the parameters for debugging purposes
print(f"Prompt: {prompt}")
print(f"Model: {model}")
print(f"Custom LoRA: {custom_lora}")
print(f"Parameters - Steps: {steps}, CFG Scale: {cfg_scale}, Seed: {seed}, Strength: {strength}, Width: {width}, Height: {height}")
# Check if the prompt is empty or None
if prompt == "" or prompt is None:
print("Prompt is empty or None. Exiting query function.") # Debug log
return None
# Generate a unique key for tracking the generation process
key = random.randint(0, 999)
print(f"Generated key: {key}") # Debug log
# Randomly select an API token from available options to distribute the load
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
print(f"Selected API token: {API_TOKEN}") # Debug log
# Enhance the prompt with additional details for better quality
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'Generation {key}: {prompt}') # Debug log
# Set the API URL based on the selected model or custom LoRA
if custom_lora.strip() != "":
API_URL = f"https://api-inference.huggingface.co/models/{custom_lora.strip()}"
else:
if model == 'Stable Diffusion XL':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
if model == 'FLUX.1 [Dev]':
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
if model == 'FLUX.1 [Schnell]':
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
if model == 'Flux Logo Design':
API_URL = "https://api-inference.huggingface.co/models/Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design"
prompt = f"wablogo, logo, Minimalist, {prompt}"
if model == 'Flux Uncensored':
API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-uncensored"
if model == 'Flux Uncensored V2':
API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-Uncensored-V2"
if model == 'Flux Tarot Cards':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Ton618-Tarot-Cards-Flux-LoRA"
prompt = f"Tarot card, {prompt}"
if model == 'Pixel Art Sprites':
API_URL = "https://api-inference.huggingface.co/models/sWizad/pokemon-trainer-sprites-pixelart-flux"
prompt = f"a pixel image, {prompt}"
if model == '3D Sketchfab':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Castor-3D-Sketchfab-Flux-LoRA"
prompt = f"3D Sketchfab, {prompt}"
if model == 'Retro Comic Flux':
API_URL = "https://api-inference.huggingface.co/models/renderartist/retrocomicflux"
prompt = f"c0m1c, comic book panel, {prompt}"
if model == 'Caricature':
API_URL = "https://api-inference.huggingface.co/models/TheAwakenOne/caricature"
prompt = f"CCTUR3, {prompt}"
if model == 'Huggieverse':
API_URL = "https://api-inference.huggingface.co/models/Chunte/flux-lora-Huggieverse"
prompt = f"HGGRE, {prompt}"
if model == 'Propaganda Poster':
API_URL = "https://api-inference.huggingface.co/models/AlekseyCalvin/Propaganda_Poster_Schnell_by_doctor_diffusion"
prompt = f"propaganda poster, {prompt}"
if model == 'Flux Game Assets V2':
API_URL = "https://api-inference.huggingface.co/models/gokaygokay/Flux-Game-Assets-LoRA-v2"
prompt = f"wbgmsst, white background, {prompt}"
if model == 'SoftPasty Flux':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/softpasty-flux-dev"
prompt = f"araminta_illus illustration style, {prompt}"
if model == 'Flux Stickers':
API_URL = "https://api-inference.huggingface.co/models/diabolic6045/Flux_Sticker_Lora"
prompt = f"5t1cker 5ty1e, {prompt}"
if model == 'Flux Animex V2':
API_URL = "https://api-inference.huggingface.co/models/strangerzonehf/Flux-Animex-v2-LoRA"
prompt = f"Animex, {prompt}"
if model == 'Flux Animeo V1':
API_URL = "https://api-inference.huggingface.co/models/strangerzonehf/Flux-Animeo-v1-LoRA"
prompt = f"Animeo, {prompt}"
if model == 'Movie Board':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Flux.1-Dev-Movie-Boards-LoRA"
prompt = f"movieboard, {prompt}"
if model == 'Purple Dreamy':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Purple-Dreamy-Flux-LoRA"
prompt = f"Purple Dreamy, {prompt}"
if model == 'PS1 Style Flux':
API_URL = "https://api-inference.huggingface.co/models/veryVANYA/ps1-style-flux"
prompt = f"ps1 game screenshot, {prompt}"
if model == 'Softserve Anime':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/softserve_anime"
prompt = f"sftsrv style illustration, {prompt}"
if model == 'Flux Tarot v1':
API_URL = "https://api-inference.huggingface.co/models/multimodalart/flux-tarot-v1"
prompt = f"in the style of TOK a trtcrd tarot style, {prompt}"
if model == 'Half Illustration':
API_URL = "https://api-inference.huggingface.co/models/davisbro/half_illustration"
prompt = f"in the style of TOK, {prompt}"
if model == 'OpenDalle v1.1':
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1"
if model == 'Flux Ghibsky Illustration':
API_URL = "https://api-inference.huggingface.co/models/aleksa-codes/flux-ghibsky-illustration"
prompt = f"GHIBSKY style, {prompt}"
if model == 'Flux Koda':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/flux-koda"
prompt = f"flmft style, {prompt}"
if model == 'Soviet Diffusion XL':
API_URL = "https://api-inference.huggingface.co/models/openskyml/soviet-diffusion-xl"
prompt = f"soviet poster, {prompt}"
if model == 'Flux Realism LoRA':
API_URL = "https://api-inference.huggingface.co/models/XLabs-AI/flux-RealismLora"
if model == 'Frosting Lane Flux':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/frosting_lane_flux"
prompt = f"frstingln illustration, {prompt}"
if model == 'Phantasma Anime':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/phantasma-anime"
if model == 'Boreal':
API_URL = "https://api-inference.huggingface.co/models/kudzueye/Boreal"
prompt = f"photo, {prompt}"
if model == 'How2Draw':
API_URL = "https://api-inference.huggingface.co/models/glif/how2draw"
prompt = f"How2Draw, {prompt}"
if model == 'Flux AestheticAnime':
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/FLUX-AestheticAnime"
if model == 'Fashion Hut Modeling LoRA':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Fashion-Hut-Modeling-LoRA"
prompt = f"Modeling of, {prompt}"
if model == 'Flux SyntheticAnime':
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/FLUX-SyntheticAnime"
prompt = f"1980s anime screengrab, VHS quality, syntheticanime, {prompt}"
if model == 'Flux Midjourney Anime':
API_URL = "https://api-inference.huggingface.co/models/brushpenbob/flux-midjourney-anime"
prompt = f"egmid, {prompt}"
if model == 'Coloring Book Generator':
API_URL = "https://api-inference.huggingface.co/models/robert123231/coloringbookgenerator"
if model == 'Collage Flux':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Castor-Collage-Dim-Flux-LoRA"
prompt = f"collage, {prompt}"
if model == 'Flux Product Ad Backdrop':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Flux-Product-Ad-Backdrop"
prompt = f"Product Ad, {prompt}"
if model == 'Product Design':
API_URL = "https://api-inference.huggingface.co/models/multimodalart/product-design"
prompt = f"product designed by prdsgn, {prompt}"
if model == '90s Anime Art':
API_URL = "https://api-inference.huggingface.co/models/glif/90s-anime-art"
if model == 'Brain Melt Acid Art':
API_URL = "https://api-inference.huggingface.co/models/glif/Brain-Melt-Acid-Art"
prompt = f"maximalism, in an acid surrealism style, {prompt}"
if model == 'Lustly Flux Uncensored v1':
API_URL = "https://api-inference.huggingface.co/models/lustlyai/Flux_Lustly.ai_Uncensored_nsfw_v1"
if model == 'NSFW Master Flux':
API_URL = "https://api-inference.huggingface.co/models/Keltezaa/NSFW_MASTER_FLUX"
prompt = f"NSFW, {prompt}"
if model == 'Flux Outfit Generator':
API_URL = "https://api-inference.huggingface.co/models/tryonlabs/FLUX.1-dev-LoRA-Outfit-Generator"
if model == 'Midjourney':
API_URL = "https://api-inference.huggingface.co/models/Jovie/Midjourney"
if model == 'DreamPhotoGASM':
API_URL = "https://api-inference.huggingface.co/models/Yntec/DreamPhotoGASM"
if model == 'Flux Super Realism LoRA':
API_URL = "https://api-inference.huggingface.co/models/strangerzonehf/Flux-Super-Realism-LoRA"
if model == 'Stable Diffusion 2-1':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1-base"
if model == 'Stable Diffusion 3.5 Large':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large"
if model == 'Stable Diffusion 3.5 Large Turbo':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo"
if model == 'Stable Diffusion 3 Medium':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3-medium-diffusers"
prompt = f"A, {prompt}"
if model == 'Duchaiten Real3D NSFW XL':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/duchaiten-real3d-nsfw-xl"
if model == 'Pixel Art XL':
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
prompt = f"pixel art, {prompt}"
if model == 'Character Design':
API_URL = "https://api-inference.huggingface.co/models/KappaNeuro/character-design"
prompt = f"Character Design, {prompt}"
if model == 'Sketched Out Manga':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/sketchedoutmanga"
prompt = f"daiton, {prompt}"
if model == 'Archfey Anime':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/archfey_anime"
if model == 'Lofi Cuties':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/lofi-cuties"
if model == 'YiffyMix':
API_URL = "https://api-inference.huggingface.co/models/Yntec/YiffyMix"
if model == 'Analog Madness Realistic v7':
API_URL = "https://api-inference.huggingface.co/models/digiplay/AnalogMadness-realistic-model-v7"
if model == 'Selfie Photography':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/selfiephotographyredmond-selfie-photography-lora-for-sdxl"
prompt = f"instagram model, discord profile picture, {prompt}"
if model == 'Filmgrain':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/filmgrain-redmond-filmgrain-lora-for-sdxl"
prompt = f"Film Grain, FilmGrainAF, {prompt}"
if model == 'Leonardo AI Style Illustration':
API_URL = "https://api-inference.huggingface.co/models/goofyai/Leonardo_Ai_Style_Illustration"
prompt = f"leonardo style, illustration, vector art, {prompt}"
if model == 'Cyborg Style XL':
API_URL = "https://api-inference.huggingface.co/models/goofyai/cyborg_style_xl"
prompt = f"cyborg style, {prompt}"
if model == 'Little Tinies':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/littletinies"
if model == 'NSFW XL':
API_URL = "https://api-inference.huggingface.co/models/Dremmar/nsfw-xl"
if model == 'Analog Redmond':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/analogredmond"
prompt = f"timeless style, {prompt}"
if model == 'Pixel Art Redmond':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/PixelArtRedmond"
prompt = f"Pixel Art, {prompt}"
if model == 'Ascii Art':
API_URL = "https://api-inference.huggingface.co/models/CiroN2022/ascii-art"
prompt = f"ascii art, {prompt}"
if model == 'Analog':
API_URL = "https://api-inference.huggingface.co/models/Yntec/Analog"
if model == 'Maple Syrup':
API_URL = "https://api-inference.huggingface.co/models/Yntec/MapleSyrup"
if model == 'Perfect Lewd Fantasy':
API_URL = "https://api-inference.huggingface.co/models/digiplay/perfectLewdFantasy_v1.01"
if model == 'AbsoluteReality 1.8.1':
API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1"
if model == 'Disney':
API_URL = "https://api-inference.huggingface.co/models/goofyai/disney_style_xl"
prompt = f"Disney style, {prompt}"
if model == 'Redmond SDXL':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/LogoRedmond-LogoLoraForSDXL-V2"
if model == 'epiCPhotoGasm':
API_URL = "https://api-inference.huggingface.co/models/Yntec/epiCPhotoGasm"
print(f"API URL set to: {API_URL}") # Debug log
# Define the payload for the request
payload = {
"inputs": prompt,
"is_negative": is_negative, # Whether to use a negative prompt
"steps": steps, # Number of sampling steps
"cfg_scale": cfg_scale, # Scale for controlling adherence to prompt
"seed": seed if seed != -1 else random.randint(1, 1000000000), # Random seed for reproducibility
"strength": strength, # How strongly the model should transform the image
"parameters": {
"width": width, # Width of the generated image
"height": height # Height of the generated image
}
}
print(f"Payload: {json.dumps(payload, indent=2)}") # Debug log
# Make a request to the API to generate the image
try:
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
print(f"Response status code: {response.status_code}") # Debug log
except requests.exceptions.RequestException as e:
# Log any request exceptions and raise an error for the user
print(f"Request failed: {e}") # Debug log
raise gr.Error(f"Request failed: {e}")
# Check if the response status is not successful
if response.status_code != 200:
print(f"Error: Failed to retrieve image. Response status: {response.status_code}") # Debug log
print(f"Response content: {response.text}") # Debug log
if response.status_code == 400:
raise gr.Error(f"{response.status_code}: Bad Request - There might be an issue with the input parameters.")
elif response.status_code == 401:
raise gr.Error(f"{response.status_code}: Unauthorized - Please check your API token.")
elif response.status_code == 403:
raise gr.Error(f"{response.status_code}: Forbidden - You do not have permission to access this model.")
elif response.status_code == 404:
raise gr.Error(f"{response.status_code}: Not Found - The requested model could not be found.")
elif response.status_code == 503:
raise gr.Error(f"{response.status_code}: The model is being loaded. Please try again later.")
else:
raise gr.Error(f"{response.status_code}: An unexpected error occurred.")
try:
# Attempt to read the image from the response content
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'Generation {key} completed! ({prompt})') # Debug log
return image
except Exception as e:
# Handle any errors that occur when opening the image
print(f"Error while trying to open image: {e}") # Debug log
return None
# Custom CSS to hide the footer in the interface
css = """
* {}
footer {visibility: hidden !important;}
"""
print("Initializing Gradio interface...") # Debug log
# Define the Gradio interface
with gr.Blocks(theme='Nymbo/Nymbo_Theme_5') as dalle:
# Tab for basic settings
with gr.Tab("Basic Settings"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
# Textbox for user to input the prompt
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
with gr.Row():
# Textbox for custom LoRA input
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
with gr.Row():
# Accordion for selecting the model
with gr.Accordion("Featured Models", open=True):
# Textbox for searching models
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
models_list = (
"3D Sketchfab",
"90s Anime Art",
"AbsoluteReality 1.8.1",
"Analog",
"Analog Madness Realistic v7",
"Analog Redmond",
"Archfey Anime",
"Ascii Art",
"Brain Melt Acid Art",
"Boreal",
"Caricature",
"Collage Flux",
"Character Design",
"Coloring Book Generator",
"Cyborg Style XL",
"Disney",
"DreamPhotoGASM",
"Duchaiten Real3D NSFW XL",
"EpiCPhotoGasm",
"Fashion Hut Modeling LoRA",
"Filmgrain",
"FLUX.1 [Dev]",
"FLUX.1 [Schnell]",
"Flux Realism LoRA",
"Flux Super Realism LoRA",
"Flux Uncensored",
"Flux Uncensored V2",
"Flux Game Assets V2",
"Flux Ghibsky Illustration",
"Flux Animex V2",
"Flux Animeo V1",
"Flux AestheticAnime",
"Flux SyntheticAnime",
"Flux Stickers",
"Flux Koda",
"Flux Tarot v1",
"Flux Tarot Cards",
"Flux Midjourney Anime",
"Flux Logo Design",
"Flux Product Ad Backdrop",
"Flux Outfit Generator",
"Frosting Lane Flux",
"Half Illustration",
"How2Draw",
"Huggieverse",
"Leonardo AI Style Illustration",
"Little Tinies",
"Lofi Cuties",
"Lustly Flux Uncensored v1",
"Maple Syrup",
"Midjourney",
"Movie Board",
"NSFW Master Flux",
"NSFW XL",
"OpenDalle v1.1",
"Perfect Lewd Fantasy",
"Pixel Art Redmond",
"Pixel Art XL",
"Pixel Art Sprites",
"Product Design",
"Propaganda Poster",
"Purple Dreamy",
"Phantasma Anime",
"PS1 Style Flux",
"Redmond SDXL",
"Retro Comic Flux",
"Softserve Anime",
"SoftPasty Flux",
"Soviet Diffusion XL",
"Sketched Out Manga",
"Selfie Photography",
"Stable Diffusion 2-1",
"Stable Diffusion XL",
"Stable Diffusion 3 Medium",
"Stable Diffusion 3.5 Large",
"Stable Diffusion 3.5 Large Turbo",
"YiffyMix",
)
# Radio buttons to select the desired model
model = gr.Radio(label="Select a model below", value="FLUX.1 [Schnell]", choices=models_list, interactive=True, elem_id="model-radio")
# Filtering models based on search input
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Update model list when search box is used
model_search.change(filter_models, inputs=model_search, outputs=model)
# Tab for advanced settings
with gr.Tab("Advanced Settings"):
with gr.Row():
# Textbox for specifying elements to exclude from the image
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
# Slider for selecting the image width
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
# Slider for selecting the image height
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
with gr.Row():
# Slider for setting the number of sampling steps
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
with gr.Row():
# Slider for adjusting the CFG scale (guidance scale)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
with gr.Row():
# Slider for adjusting the transformation strength
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
with gr.Row():
# Slider for setting the seed for reproducibility
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Row():
# Radio buttons for selecting the sampling method
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
# Tab for image editing options
with gr.Tab("Image Editor"):
# Function to simulate a delay for processing
def sleep(im):
print("Sleeping for 5 seconds...") # Debug log
time.sleep(5)
return [im["background"], im["layers"][0], im["layers"][1], im["composite"]]
# Function to return the composite image
def predict(im):
print("Predicting composite image...") # Debug log
return im["composite"]
with gr.Blocks() as demo:
with gr.Row():
# Image editor component for user adjustments
im = gr.ImageEditor(
type="numpy",
crop_size="1:1", # Set crop size to a square aspect ratio
)
# Tab to provide information to the user
with gr.Tab("Information"):
with gr.Row():
# Display a sample prompt for guidance
gr.Textbox(label="Sample prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.")
# Accordion displaying featured models
with gr.Accordion("Featured Models (WiP)", open=False):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?inference=warm&sort=likes&search=stable-diffusion">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Typography</th>
<th>Notes</th>
</tr>
<tr>
<td>FLUX.1 Dev</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>FLUX.1 Schnell</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>Stable Diffusion 3.5 Large</td>
<td>✅</td>
<td></td>
</tr>
</table>
"""
)
# Accordion providing an overview of advanced settings
with gr.Accordion("Advanced Settings Overview", open=False):
gr.Markdown(
"""
## Negative Prompt
###### This box is for telling the AI what you don't want in your images. Think of it as a way to avoid certain elements. For instance, if you don't want blurry images or extra limbs showing up, this is where you'd mention it.
## Width & Height
###### These sliders allow you to specify the resolution of your image. Default value is 1024x1024, and maximum output is 1216x1216.
## Sampling Steps
###### Think of this like the number of brushstrokes in a painting. A higher number can give you a more detailed picture, but it also takes a bit longer. Generally, a middle-ground number like 35 is a good balance between quality and speed.
## CFG Scale
###### CFG stands for "Control Free Guidance." The scale adjusts how closely the AI follows your prompt. A lower number makes the AI more creative and free-flowing, while a higher number makes it stick closely to what you asked for. If you want the AI to take fewer artistic liberties, slide this towards a higher number. Just think "Control Freak Gauge".
## Sampling Method
###### This is the technique the AI uses to create your image. Each option is a different approach, like choosing between pencils, markers, or paint. You don't need to worry too much about this; the default setting is usually the best choice for most users.
## Strength
###### This setting is a bit like the 'intensity' knob. It determines how much the AI modifies the base image it starts with. If you're looking to make subtle changes, keep this low. For more drastic transformations, turn it up.
## Seed
###### You can think of the seed as a 'recipe' for creating an image. If you find a seed that gives you a result you love, you can use it again to create a similar image. If you leave it at -1, the AI will generate a new seed every time.
### Remember, these settings are all about giving you control over the image generation process. Feel free to experiment and see what each one does. And if you're ever in doubt, the default settings are a great place to start. Happy creating!
"""
)
# Row containing the 'Run' button to trigger the image generation
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
# Row for displaying the generated image output
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
# Set up button click event to call the query function
text_button.click(query, inputs=[text_prompt, model, custom_lora, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
print("Launching Gradio interface...") # Debug log
# Launch the Gradio interface without showing the API or sharing externally
dalle.launch(show_api=False, share=False)