NLLB-Translator / app.py
mrm8488's picture
Update links
2c30e7b
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
from ui import title, description, examples
from langs import LANGS
TASK = "translation"
CKPT = "facebook/nllb-200-distilled-600M"
model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
tokenizer = AutoTokenizer.from_pretrained(CKPT)
device = 0 if torch.cuda.is_available() else -1
def translate(text, src_lang, tgt_lang, max_length=400):
"""
Translate the text from source lang to target lang
"""
translation_pipeline = pipeline(TASK,
model=model,
tokenizer=tokenizer,
src_lang=src_lang,
tgt_lang=tgt_lang,
max_length=max_length,
device=device)
result = translation_pipeline(text)
return result[0]['translation_text']
gr.Interface(
translate,
[
gr.components.Textbox(label="Text"),
gr.components.Dropdown(label="Source Language", choices=LANGS),
gr.components.Dropdown(label="Target Language", choices=LANGS),
gr.components.Slider(8, 512, value=400, step=8, label="Max Length")
],
["text"],
examples=examples,
# article=article,
cache_examples=False,
title=title,
description=description
).launch()