NarmathaP commited on
Commit
2ec6597
β€’
1 Parent(s): b9c614c

Upload 3 files

Browse files
Files changed (3) hide show
  1. .env +1 -0
  2. app.py +101 -0
  3. requirements.txt +9 -0
.env ADDED
@@ -0,0 +1 @@
 
 
1
+ GOOGLE_API_KEY="AIzaSyDsQ2F-6XfxuRFUXYFrcG6LSB95Z6xLre8"
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ import os
5
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
+ import google.generativeai as genai
7
+ from langchain.vectorstores import FAISS
8
+ from langchain_google_genai import ChatGoogleGenerativeAI
9
+ from langchain.chains.question_answering import load_qa_chain
10
+ from langchain.prompts import PromptTemplate
11
+ from dotenv import load_dotenv
12
+ from PIL import Image
13
+ import io
14
+
15
+ # Load environment variables
16
+ load_dotenv()
17
+ os.getenv("GOOGLE_API_KEY")
18
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
19
+
20
+ # Global variable for embeddings
21
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
22
+
23
+ def get_pdf_text(pdf_docs):
24
+ text = ""
25
+ for pdf in pdf_docs:
26
+ pdf_reader = PdfReader(pdf)
27
+ for page in pdf_reader.pages:
28
+ text += page.extract_text()
29
+ return text
30
+
31
+ def get_image_text(image_files):
32
+ # Placeholder function for extracting text from images
33
+ # Implement OCR or other text extraction methods as needed
34
+ text = ""
35
+ for image in image_files:
36
+ # Simulate text extraction
37
+ text += "Extracted text from image.\n"
38
+ return text
39
+
40
+ def get_text_chunks(text):
41
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
42
+ chunks = text_splitter.split_text(text)
43
+ return chunks
44
+
45
+ def get_vector_store(text_chunks):
46
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
47
+ vector_store.save_local("faiss_index")
48
+
49
+ def load_faiss_index():
50
+ return FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
51
+
52
+ def get_conversational_chain():
53
+ prompt_template = """
54
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
55
+ provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
56
+ Context:\n {context}?\n
57
+ Question: \n{question}\n
58
+
59
+ Answer:
60
+ """
61
+
62
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
63
+ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
64
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
65
+ return chain
66
+
67
+ def user_input(user_question):
68
+ new_db = load_faiss_index()
69
+ docs = new_db.similarity_search(user_question)
70
+ chain = get_conversational_chain()
71
+ response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
72
+ print(response)
73
+ st.write("Reply: ", response["output_text"])
74
+ st.snow() # Trigger snowflakes animation after receiving reply
75
+
76
+ def main():
77
+ st.set_page_config("Chat with Documents and Images", page_icon="πŸ“„")
78
+ st.header("Chat with Multi Docs and Images πŸ’")
79
+
80
+ user_question = st.text_input("Ask a Question from the PDF Files or Uploaded Images")
81
+
82
+ if user_question:
83
+ user_input(user_question)
84
+
85
+ with st.sidebar:
86
+ st.title("Menu:")
87
+
88
+ pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=["pdf"])
89
+ image_files = st.file_uploader("Upload your Image Files", accept_multiple_files=True, type=["jpg", "jpeg", "png"])
90
+
91
+ if st.button("Submit & Process"):
92
+ with st.spinner("Processing..."):
93
+ raw_text = get_pdf_text(pdf_docs) + get_image_text(image_files)
94
+ text_chunks = get_text_chunks(raw_text)
95
+ get_vector_store(text_chunks)
96
+ st.success("Done")
97
+ st.balloons() # Trigger balloons animation
98
+
99
+ if __name__ == "__main__":
100
+ main()
101
+
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ google-generativeai
3
+ python-dotenv
4
+ langchain
5
+ PyPDF2
6
+ chroma
7
+ faiss-cpu
8
+ langchain_google_genai
9
+ langchain_community