Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import XLNetTokenizer, XLNetModel
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# TextEncoder class
|
8 |
+
class TextEncoder(nn.Module):
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__()
|
11 |
+
self.transformer = XLNetModel.from_pretrained("xlnet-base-cased")
|
12 |
+
|
13 |
+
def forward(self, input_ids, token_type_ids, attention_mask):
|
14 |
+
hidden = self.transformer(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask).last_hidden_state
|
15 |
+
context = hidden.mean(dim=1)
|
16 |
+
context = context.view(*context.shape, 1, 1)
|
17 |
+
return context
|
18 |
+
|
19 |
+
# Generator class
|
20 |
+
class Generator(nn.Module):
|
21 |
+
def __init__(self, nz=100, ngf=64, nt=768, nc=3):
|
22 |
+
super().__init__()
|
23 |
+
self.layer1 = nn.Sequential(
|
24 |
+
nn.ConvTranspose2d(nz+nt, ngf*8, 4, 1, 0, bias=False),
|
25 |
+
nn.BatchNorm2d(ngf*8)
|
26 |
+
)
|
27 |
+
self.layer2 = nn.Sequential(
|
28 |
+
nn.Conv2d(ngf*8, ngf*2, 1, 1),
|
29 |
+
nn.Dropout2d(inplace=True),
|
30 |
+
nn.BatchNorm2d(ngf*2),
|
31 |
+
nn.ReLU(True)
|
32 |
+
)
|
33 |
+
self.layer3 = nn.Sequential(
|
34 |
+
nn.Conv2d(ngf*2, ngf*2, 3, 1, 1),
|
35 |
+
nn.Dropout2d(inplace=True),
|
36 |
+
nn.BatchNorm2d(ngf*2),
|
37 |
+
nn.ReLU(True)
|
38 |
+
)
|
39 |
+
self.layer4 = nn.Sequential(
|
40 |
+
nn.Conv2d(ngf*2, ngf*8, 3, 1, 1),
|
41 |
+
nn.Dropout2d(inplace=True),
|
42 |
+
nn.BatchNorm2d(ngf*8),
|
43 |
+
nn.ReLU(True)
|
44 |
+
)
|
45 |
+
self.layer5 = nn.Sequential(
|
46 |
+
nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False),
|
47 |
+
nn.BatchNorm2d(ngf*4),
|
48 |
+
nn.ReLU(True)
|
49 |
+
)
|
50 |
+
self.layer6 = nn.Sequential(
|
51 |
+
nn.Conv2d(ngf*4, ngf, 1, 1),
|
52 |
+
nn.Dropout2d(inplace=True),
|
53 |
+
nn.BatchNorm2d(ngf),
|
54 |
+
nn.ReLU(True)
|
55 |
+
)
|
56 |
+
self.layer7 = nn.Sequential(
|
57 |
+
nn.Conv2d(ngf, ngf, 3, 1, 1),
|
58 |
+
nn.Dropout2d(inplace=True),
|
59 |
+
nn.BatchNorm2d(ngf),
|
60 |
+
nn.ReLU(True)
|
61 |
+
)
|
62 |
+
self.layer8 = nn.Sequential(
|
63 |
+
nn.Conv2d(ngf, ngf*4, 3, 1, 1),
|
64 |
+
nn.Dropout2d(inplace=True),
|
65 |
+
nn.BatchNorm2d(ngf*4),
|
66 |
+
nn.ReLU(True)
|
67 |
+
)
|
68 |
+
self.layer9 = nn.Sequential(
|
69 |
+
nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False),
|
70 |
+
nn.BatchNorm2d(ngf*2),
|
71 |
+
nn.ReLU(True)
|
72 |
+
)
|
73 |
+
self.layer10 = nn.Sequential(
|
74 |
+
nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False),
|
75 |
+
nn.BatchNorm2d(ngf),
|
76 |
+
nn.ReLU(True)
|
77 |
+
)
|
78 |
+
self.layer11 = nn.Sequential(
|
79 |
+
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
|
80 |
+
nn.Tanh()
|
81 |
+
)
|
82 |
+
|
83 |
+
def forward(self, noise, encoded_text):
|
84 |
+
x = torch.cat([noise, encoded_text], dim=1)
|
85 |
+
x = self.layer1(x)
|
86 |
+
x = self.layer2(x)
|
87 |
+
x = self.layer3(x)
|
88 |
+
x = self.layer4(x)
|
89 |
+
x = self.layer5(x)
|
90 |
+
x = self.layer6(x)
|
91 |
+
x = self.layer7(x)
|
92 |
+
x = self.layer8(x)
|
93 |
+
x = self.layer9(x)
|
94 |
+
x = self.layer10(x)
|
95 |
+
x = self.layer11(x)
|
96 |
+
return x
|
97 |
+
|
98 |
+
|
99 |
+
# Load the model and tokenizer
|
100 |
+
model_path = "./checkpoint.pth"
|
101 |
+
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
|
102 |
+
text_encoder = XLNetModel.from_pretrained('xlnet-base-cased')
|
103 |
+
model = Generator()
|
104 |
+
model_state_dict = torch.load(model_path, map_location="cpu")
|
105 |
+
generator = model_state_dict['models']['generator']
|
106 |
+
model.load_state_dict(generator)
|
107 |
+
|
108 |
+
text_encoder.to("cpu")
|
109 |
+
model.to("cpu")
|
110 |
+
model.eval()
|
111 |
+
|
112 |
+
# Functions to encode text and generate image
|
113 |
+
def encode_text(text):
|
114 |
+
text_encoder_model = TextEncoder()
|
115 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
116 |
+
encoded_text = text_encoder_model(**inputs)
|
117 |
+
return encoded_text
|
118 |
+
|
119 |
+
def generate_image(text):
|
120 |
+
encoded_text = encode_text(text)
|
121 |
+
noise = torch.randn((1, 100, 1, 1), device="cpu")
|
122 |
+
with torch.no_grad():
|
123 |
+
generated_image = model(noise, encoded_text).detach().squeeze().cpu()
|
124 |
+
gen_image_np = generated_image.numpy()
|
125 |
+
gen_image_np = np.transpose(gen_image_np, (1, 2, 0)) # Change from CHW to HWC
|
126 |
+
gen_image_np = (gen_image_np - gen_image_np.min()) / (gen_image_np.max() - gen_image_np.min()) # Normalize to [0, 1]
|
127 |
+
gen_image_np = (gen_image_np * 255).astype(np.uint8)
|
128 |
+
return gen_image_np
|
129 |
+
|
130 |
+
# Gradio interface
|
131 |
+
inputs = gr.inputs.Textbox(label="Enter a flower-related description", default="A beautiful red rose")
|
132 |
+
outputs = gr.outputs.Image(type="numpy", label="Generated Flower Image")
|
133 |
+
|
134 |
+
gr.Interface(fn=generate_image, inputs=inputs, outputs=outputs, title="Flower Image Generator", description="Enter a description of a flower to generate an image.").launch()
|