Spaces:
Sleeping
Sleeping
Narayana02
commited on
Upload 4 files
Browse files- .env +1 -0
- app.py +59 -0
- requirements.txt +6 -0
- utilities.py +65 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_API_KEY = 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
|
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from utils import (
|
5 |
+
extract_text_from_pdf,
|
6 |
+
build_hierarchical_tree,
|
7 |
+
save_tree,
|
8 |
+
hybrid_retrieval,
|
9 |
+
rag_answer,
|
10 |
+
)
|
11 |
+
|
12 |
+
# Load API key from .env
|
13 |
+
load_dotenv()
|
14 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
15 |
+
|
16 |
+
# Create necessary directories
|
17 |
+
os.makedirs("uploaded_textbooks", exist_ok=True)
|
18 |
+
os.makedirs("hierarchical_trees", exist_ok=True)
|
19 |
+
os.makedirs("retrieved_contexts", exist_ok=True)
|
20 |
+
|
21 |
+
# Streamlit UI
|
22 |
+
st.title("Hierarchical Question-Answering System 📚🤖")
|
23 |
+
st.markdown(
|
24 |
+
"Upload textbooks, explore their structure, and ask questions powered by AI."
|
25 |
+
)
|
26 |
+
|
27 |
+
# Upload PDF section
|
28 |
+
uploaded_files = st.file_uploader("Upload Textbooks (PDF)", type=["pdf"], accept_multiple_files=True)
|
29 |
+
|
30 |
+
if uploaded_files:
|
31 |
+
for uploaded_file in uploaded_files:
|
32 |
+
file_path = os.path.join("uploaded_textbooks", uploaded_file.name)
|
33 |
+
with open(file_path, "wb") as f:
|
34 |
+
f.write(uploaded_file.read())
|
35 |
+
|
36 |
+
# Extract text
|
37 |
+
st.write(f"Processing: {uploaded_file.name}")
|
38 |
+
extracted_text = extract_text_from_pdf(file_path)
|
39 |
+
|
40 |
+
# Build hierarchical tree
|
41 |
+
tree = build_hierarchical_tree(extracted_text, textbook_title=uploaded_file.name)
|
42 |
+
tree_path = os.path.join("hierarchical_trees", f"{uploaded_file.name}_tree.json")
|
43 |
+
save_tree(tree, tree_path)
|
44 |
+
|
45 |
+
st.success(f"Processed and indexed: {uploaded_file.name}")
|
46 |
+
|
47 |
+
# Query Section
|
48 |
+
query = st.text_input("Ask a question:")
|
49 |
+
if query:
|
50 |
+
st.write("Retrieving relevant information...")
|
51 |
+
relevant_text = hybrid_retrieval(query, OPENAI_API_KEY)
|
52 |
+
if relevant_text:
|
53 |
+
st.write("Generating an answer...")
|
54 |
+
answer = rag_answer(query, relevant_text, OPENAI_API_KEY)
|
55 |
+
st.write(f"**Answer:** {answer}")
|
56 |
+
st.write("**Relevant Context:**")
|
57 |
+
st.write(relevant_text)
|
58 |
+
else:
|
59 |
+
st.write("No relevant information found.")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
PyPDF2
|
3 |
+
networkx
|
4 |
+
sentence-transformers
|
5 |
+
openai
|
6 |
+
transformers
|
utilities.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import json
|
3 |
+
import networkx as nx
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
import openai
|
6 |
+
|
7 |
+
# Model for embeddings
|
8 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
9 |
+
|
10 |
+
# 1. Extract Text from PDF
|
11 |
+
def extract_text_from_pdf(file_path):
|
12 |
+
"""Extract text from a PDF."""
|
13 |
+
text = ""
|
14 |
+
with open(file_path, "rb") as f:
|
15 |
+
reader = PyPDF2.PdfReader(f)
|
16 |
+
for page in reader.pages:
|
17 |
+
text += page.extract_text()
|
18 |
+
return text
|
19 |
+
|
20 |
+
# 2. Build Hierarchical Tree
|
21 |
+
def build_hierarchical_tree(text, textbook_title):
|
22 |
+
"""Create a hierarchical tree structure."""
|
23 |
+
lines = text.split("\n")
|
24 |
+
tree = {"title": textbook_title, "chapters": []}
|
25 |
+
current_chapter = None
|
26 |
+
|
27 |
+
for line in lines:
|
28 |
+
if line.strip().startswith("Chapter"):
|
29 |
+
current_chapter = {"title": line.strip(), "sections": []}
|
30 |
+
tree["chapters"].append(current_chapter)
|
31 |
+
elif current_chapter and line.strip():
|
32 |
+
current_chapter["sections"].append(line.strip())
|
33 |
+
return tree
|
34 |
+
|
35 |
+
def save_tree(tree, path):
|
36 |
+
"""Save the hierarchical tree."""
|
37 |
+
with open(path, "w") as f:
|
38 |
+
json.dump(tree, f, indent=4)
|
39 |
+
|
40 |
+
# 3. Hybrid Retrieval
|
41 |
+
def hybrid_retrieval(query, openai_api_key):
|
42 |
+
"""Retrieve relevant text using hybrid methods."""
|
43 |
+
with open("hierarchical_trees/example_tree.json") as f: # Adjust file path as needed
|
44 |
+
tree = json.load(f)
|
45 |
+
|
46 |
+
all_sections = [
|
47 |
+
section for chapter in tree["chapters"] for section in chapter["sections"]
|
48 |
+
]
|
49 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
50 |
+
section_embeddings = model.encode(all_sections, convert_to_tensor=True)
|
51 |
+
similarities = util.pytorch_cos_sim(query_embedding, section_embeddings)
|
52 |
+
|
53 |
+
top_indices = similarities[0].topk(3).indices.tolist()
|
54 |
+
return " ".join([all_sections[i] for i in top_indices])
|
55 |
+
|
56 |
+
# 4. RAG Answer Generation
|
57 |
+
def rag_answer(query, context, openai_api_key):
|
58 |
+
"""Generate an answer using Retrieval-Augmented Generation."""
|
59 |
+
openai.api_key = openai_api_key
|
60 |
+
response = openai.Completion.create(
|
61 |
+
engine="text-davinci-003",
|
62 |
+
prompt=f"Answer the question based on the context below:\n\nContext: {context}\n\nQuestion: {query}\n\nAnswer:",
|
63 |
+
max_tokens=150,
|
64 |
+
)
|
65 |
+
return response.choices[0].text.strip()
|