Spaces:
Running
Running
import time | |
import json | |
import soundfile as sf | |
import torch | |
import torchaudio | |
import librosa | |
import yaml | |
from munch import Munch | |
from nltk.tokenize import word_tokenize | |
from models import * | |
from utils import * | |
from text_utils import TextCleaner | |
import phonemizer | |
from Utils.PLBERT.util import load_plbert | |
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
import pandas as pd | |
# Setup | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
import random | |
import tqdm | |
import argparse | |
# Load packages | |
text_cleaner = TextCleaner() | |
# Mel Spectrogram transformation | |
to_mel = torchaudio.transforms.MelSpectrogram(n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
mean, std = -4, 4 | |
# Load models and configurations | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
#LibriModel | |
config = yaml.safe_load(open("Models/LibriTTS/config.yml")) | |
#LJModel | |
# config = yaml.safe_load(open("Models/LJSpeech/Models_LJSpeech_config.yml")) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
model_params = recursive_munch(config['model_params']) | |
model = build_model(model_params, text_aligner, pitch_extractor, plbert) | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
#LibriModel | |
params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu') | |
#LJModel | |
# params_whole = torch.load("Models/LJSpeech/epoch_2nd_00100.pth", map_location='cpu') | |
params = params_whole['net'] | |
for key in model: | |
if key in params: | |
print('%s loaded' % key) | |
try: | |
model[key].load_state_dict(params[key]) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
# load params | |
model[key].load_state_dict(new_state_dict, strict=False) | |
# except: | |
# _load(params[key], model[key]) | |
_ = [model[key].eval() for key in model] | |
# Load sampler | |
sampler = DiffusionSampler( | |
model.diffusion.diffusion, | |
sampler=ADPM2Sampler(), | |
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
clamp=False | |
) | |
# Load phonemizer | |
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) | |
# Preprocessing functions | |
def length_to_mask(lengths): | |
"Gets the mask of the max length" | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask + 1, lengths.unsqueeze(1)) | |
return mask | |
def preprocess(wave): | |
"Turns wave to mel tensor" | |
wave_tensor = torch.from_numpy(wave).float() | |
mel_tensor = to_mel(wave_tensor) | |
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std | |
return mel_tensor | |
def compute_style(path, device, model): | |
"Computes the style vector for a given audio file" | |
wave, sr = librosa.load(path, sr=24000) | |
audio, index = librosa.effects.trim(wave, top_db=30) | |
if sr != 24000: | |
audio = librosa.resample(audio, sr, 24000) | |
mel_tensor = preprocess(audio).to(device) | |
with torch.no_grad(): | |
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) | |
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) | |
return torch.cat([ref_s, ref_p], dim=1) | |
# Inference function | |
def inference(text, ref_s, model, device, alpha=0.3, beta=0.7, diffusion_steps=10, embedding_scale=1): | |
# Preprocess text | |
text = text.replace('"', '') | |
ps = global_phonemizer.phonemize([text]) | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
tokens = text_cleaner(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
max_length = 512 | |
if len(tokens) > max_length: | |
tokens = tokens[:max_length] | |
with torch.no_grad(): | |
# Process text | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), | |
embedding=bert_dur, | |
embedding_scale=embedding_scale, | |
features=ref_s, # reference from the same speaker as the embedding | |
num_steps=diffusion_steps).squeeze(1) | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] | |
s = beta * s + (1 - beta) * ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, | |
s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(en) | |
asr_new[:, :, 0] = en[:, :, 0] | |
asr_new[:, :, 1:] = en[:, :, 0:-1] | |
en = asr_new | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(asr) | |
asr_new[:, :, 0] = asr[:, :, 0] | |
asr_new[:, :, 1:] = asr[:, :, 0:-1] | |
asr = asr_new | |
out = model.decoder(asr, | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
# Return synthesized speech | |
return out.squeeze().cpu().numpy()[..., :-50] | |
# Function to generate synthetic voices for multiple texts | |
def generate_synthetic_voice(transcription, ref_s, model, device, index, output_folder="Output", alpha=0.3, beta=0.7, diffusion_steps=10, embedding_scale=1): | |
wav = inference(transcription, ref_s, model, device, alpha, beta, diffusion_steps, embedding_scale) | |
audio_filename = f"synthetic_voice_{index}.wav" | |
output_path = f"{output_folder}/{audio_filename}" | |
sf.write(output_path, wav, 24000) | |
return output_path | |
def main(max_files): | |
# Load the transcriptions from the CSV file | |
csv_file = 'transcriptions.csv' | |
if os.path.exists(csv_file): | |
df = pd.read_csv(csv_file) | |
# Ensure the "audio_path" column exists | |
if 'audio_path' not in df.columns: | |
df['audio_path'] = '' | |
# Get the list of reference audio files | |
ref_audio_folder = 'reference_audio' | |
ref_audio_files = [os.path.join(ref_audio_folder, f) for f in os.listdir(ref_audio_folder) if f.endswith('.wav')] | |
# Calculate the number of rows to process | |
num_rows_to_process = df['audio_path'].isnull().sum() + (df['audio_path'] == '').sum() | |
num_rows_to_process = min(num_rows_to_process, max_files) | |
if max_files == np.inf: | |
max_files = num_rows_to_process | |
progress_bar = tqdm.tqdm(total=num_rows_to_process, desc="Generating Audio Files") | |
new_audio_count = 0 # Initialize the counter for new audio files | |
# Process transcriptions that don't have an audio path yet | |
for index, row in df.iterrows(): | |
if pd.isna(row['audio_path']) or row['audio_path'] == '': | |
path = random.choice(ref_audio_files) | |
ref_s = compute_style(path, device, model) | |
transcription = row['transcription'] | |
audio_path = generate_synthetic_voice(transcription, ref_s, model, device, index) | |
df.at[index, 'audio_path'] = audio_path # Write audio path in dataframe | |
new_audio_count += 1 | |
progress_bar.update(1) | |
# Save the updated DataFrame to the CSV file | |
df.to_csv(csv_file, index=False) | |
# Stop if the maximum number of new audio files is reached | |
if new_audio_count >= max_files: | |
break | |
if new_audio_count == num_rows_to_process: | |
print('All transcriptions have been created.') | |
else: | |
print(f'Finished creating {new_audio_count} new transcriptions.') | |
else: | |
print(f"CSV file {csv_file} does not exist.") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Generate synthetic audio files.') | |
parser.add_argument('--max_files', type=str, default='5', help='Maximum number of new audio files to create or "all" to process all rows') | |
args = parser.parse_args() | |
if args.max_files.lower() == 'all': | |
max_files = np.inf # Set to infinity to process all rows | |
else: | |
max_files = int(args.max_files) | |
main(max_files=max_files) | |
# Example: python inference.py --max_files=100 | |
# This will create 100 new audio files or all the transcriptions from the csv file | |