Spaces:
Sleeping
Sleeping
import os | |
import fitz # PyMuPDF | |
from docx import Document | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import pickle | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from fastapi import FastAPI, UploadFile, File | |
from typing import List | |
app = FastAPI() | |
# Function to extract text from a PDF file | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
doc = fitz.open(pdf_path) | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text += page.get_text() | |
return text | |
# Function to extract text from a Word document | |
def extract_text_from_docx(docx_path): | |
doc = Document(docx_path) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
return text | |
# Initialize the embedding model | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Hugging Face API token | |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
if not api_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set") | |
print(f"API Token: {api_token[:5]}...") | |
# Initialize the HuggingFace LLM | |
llm = HuggingFaceEndpoint( | |
endpoint_url="https://api-inference.huggingface.co/models/gpt2", | |
model_kwargs={"api_key": api_token} | |
) | |
# Initialize the HuggingFace embeddings | |
embedding = HuggingFaceEmbeddings() | |
# Load or create FAISS index | |
index_path = "faiss_index.pkl" | |
if os.path.exists(index_path): | |
with open(index_path, "rb") as f: | |
index = pickle.load(f) | |
else: | |
# Create a new FAISS index if it doesn't exist | |
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension()) | |
with open(index_path, "wb") as f: | |
pickle.dump(index, f) | |
async def upload_file(files: List[UploadFile] = File(...)): | |
for file in files: | |
content = await file.read() | |
if file.filename.endswith('.pdf'): | |
with open("temp.pdf", "wb") as f: | |
f.write(content) | |
text = extract_text_from_pdf("temp.pdf") | |
elif file.filename.endswith('.docx'): | |
with open("temp.docx", "wb") as f: | |
f.write(content) | |
text = extract_text_from_docx("temp.docx") | |
else: | |
return {"error": "Unsupported file format"} | |
# Process the text and update FAISS index | |
sentences = text.split("\n") | |
embeddings = embedding_model.encode(sentences) | |
index.add(np.array(embeddings)) | |
# Save the updated index | |
with open(index_path, "wb") as f: | |
pickle.dump(index, f) | |
return {"message": "Files processed successfully"} | |
async def query(text: str): | |
# Encode the query text | |
query_embedding = embedding_model.encode([text]) | |
# Search the FAISS index | |
D, I = index.search(np.array(query_embedding), k=5) | |
top_documents = [] | |
for idx in I[0]: | |
if idx != -1: # Ensure that a valid index is found | |
top_documents.append(f"Document {idx}") | |
return {"top_documents": top_documents} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) |