|
import base64 |
|
import copy |
|
import re |
|
import time |
|
from collections import deque |
|
from io import BytesIO |
|
|
|
import requests |
|
import tiktoken |
|
import torch |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from transformers import LogitsProcessor, LogitsProcessorList |
|
|
|
from extensions.openai.errors import InvalidRequestError |
|
from extensions.openai.utils import debug_msg |
|
from modules import shared |
|
from modules.chat import ( |
|
generate_chat_prompt, |
|
generate_chat_reply, |
|
load_character_memoized, |
|
load_instruction_template_memoized |
|
) |
|
from modules.presets import load_preset_memoized |
|
from modules.text_generation import ( |
|
decode, |
|
encode, |
|
generate_reply, |
|
get_reply_from_output_ids |
|
) |
|
|
|
|
|
class LogitsBiasProcessor(LogitsProcessor): |
|
def __init__(self, logit_bias={}): |
|
self.logit_bias = logit_bias |
|
if self.logit_bias: |
|
self.keys = list([int(key) for key in self.logit_bias.keys()]) |
|
values = [self.logit_bias[str(key)] for key in self.keys] |
|
self.values = torch.tensor(values, dtype=torch.float, device=shared.model.device) |
|
debug_msg(f"{self})") |
|
|
|
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor: |
|
if self.logit_bias: |
|
debug_msg(logits[0, self.keys], " + ", self.values) |
|
logits[0, self.keys] += self.values |
|
debug_msg(" --> ", logits[0, self.keys]) |
|
debug_msg(" max/min ", float(torch.max(logits[0])), float(torch.min(logits[0]))) |
|
|
|
return logits |
|
|
|
def __repr__(self): |
|
return f"<{self.__class__.__name__}(logit_bias={self.logit_bias})>" |
|
|
|
|
|
class LogprobProcessor(LogitsProcessor): |
|
def __init__(self, logprobs=None): |
|
self.logprobs = logprobs |
|
self.token_alternatives = {} |
|
|
|
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor: |
|
if self.logprobs is not None: |
|
log_e_probabilities = F.log_softmax(logits, dim=1) |
|
top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs + 1) |
|
top_tokens = [get_reply_from_output_ids([tok]) for tok in top_indices[0]] |
|
top_probs = [float(x) for x in top_values[0]] |
|
self.token_alternatives = dict(zip(top_tokens, top_probs)) |
|
debug_msg(repr(self)) |
|
|
|
return logits |
|
|
|
def __repr__(self): |
|
return f"<{self.__class__.__name__}(logprobs={self.logprobs}, token_alternatives={self.token_alternatives})>" |
|
|
|
|
|
def convert_logprobs_to_tiktoken(model, logprobs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return logprobs |
|
|
|
|
|
def process_parameters(body, is_legacy=False): |
|
generate_params = body |
|
max_tokens_str = 'length' if is_legacy else 'max_tokens' |
|
generate_params['max_new_tokens'] = body.pop(max_tokens_str) |
|
if generate_params['truncation_length'] == 0: |
|
generate_params['truncation_length'] = shared.settings['truncation_length'] |
|
|
|
if generate_params['temperature'] == 0: |
|
generate_params['do_sample'] = False |
|
generate_params['top_k'] = 1 |
|
|
|
if body['preset'] is not None: |
|
preset = load_preset_memoized(body['preset']) |
|
generate_params.update(preset) |
|
|
|
generate_params['custom_stopping_strings'] = [] |
|
if 'stop' in body: |
|
if isinstance(body['stop'], str): |
|
generate_params['custom_stopping_strings'] = [body['stop']] |
|
elif isinstance(body['stop'], list): |
|
generate_params['custom_stopping_strings'] = body['stop'] |
|
|
|
logits_processor = [] |
|
logit_bias = body.get('logit_bias', None) |
|
if logit_bias: |
|
logits_processor = [LogitsBiasProcessor(logit_bias)] |
|
|
|
logprobs = None |
|
if 'logprobs' in body: |
|
logprobs = body.get('logprobs', 0) |
|
generate_params['logprob_proc'] = LogprobProcessor(logprobs) |
|
logits_processor.extend([generate_params['logprob_proc']]) |
|
else: |
|
logprobs = None |
|
|
|
if logits_processor: |
|
generate_params['logits_processor'] = LogitsProcessorList(logits_processor) |
|
|
|
return generate_params |
|
|
|
|
|
def convert_history(history): |
|
''' |
|
Chat histories in this program are in the format [message, reply]. |
|
This function converts OpenAI histories to that format. |
|
''' |
|
chat_dialogue = [] |
|
current_message = "" |
|
current_reply = "" |
|
user_input = "" |
|
system_message = "" |
|
|
|
|
|
if any('content' in entry and isinstance(entry['content'], list) for entry in history): |
|
new_history = [] |
|
for entry in history: |
|
if isinstance(entry['content'], list): |
|
image_url = None |
|
content = None |
|
for item in entry['content']: |
|
if not isinstance(item, dict): |
|
continue |
|
|
|
if item['type'] == 'image_url' and isinstance(item['image_url'], dict): |
|
image_url = item['image_url']['url'] |
|
elif item['type'] == 'text' and isinstance(item['text'], str): |
|
content = item['text'] |
|
|
|
if image_url and content: |
|
new_history.append({"image_url": image_url, "role": "user"}) |
|
new_history.append({"content": content, "role": "user"}) |
|
else: |
|
new_history.append(entry) |
|
|
|
history = new_history |
|
|
|
for entry in history: |
|
if "image_url" in entry: |
|
image_url = entry['image_url'] |
|
if "base64" in image_url: |
|
image_url = re.sub('^data:image/.+;base64,', '', image_url) |
|
img = Image.open(BytesIO(base64.b64decode(image_url))) |
|
else: |
|
try: |
|
my_res = requests.get(image_url) |
|
img = Image.open(BytesIO(my_res.content)) |
|
except Exception: |
|
raise 'Image cannot be loaded from the URL!' |
|
|
|
buffered = BytesIO() |
|
if img.mode in ("RGBA", "P"): |
|
img = img.convert("RGB") |
|
|
|
img.save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
content = f'<img src="data:image/jpeg;base64,{img_str}">' |
|
else: |
|
content = entry["content"] |
|
|
|
role = entry["role"] |
|
|
|
if role == "user": |
|
user_input = content |
|
if current_message: |
|
chat_dialogue.append([current_message, '']) |
|
current_message = "" |
|
|
|
current_message = content |
|
elif role == "assistant": |
|
current_reply = content |
|
if current_message: |
|
chat_dialogue.append([current_message, current_reply]) |
|
current_message = "" |
|
current_reply = "" |
|
else: |
|
chat_dialogue.append(['', current_reply]) |
|
elif role == "system": |
|
system_message = content |
|
|
|
|
|
|
|
|
|
return user_input, system_message, {'internal': chat_dialogue, 'visible': copy.deepcopy(chat_dialogue)} |
|
|
|
|
|
def chat_completions_common(body: dict, is_legacy: bool = False, stream=False) -> dict: |
|
if body.get('functions', []): |
|
raise InvalidRequestError(message="functions is not supported.", param='functions') |
|
|
|
if body.get('function_call', ''): |
|
raise InvalidRequestError(message="function_call is not supported.", param='function_call') |
|
|
|
if 'messages' not in body: |
|
raise InvalidRequestError(message="messages is required", param='messages') |
|
|
|
messages = body['messages'] |
|
for m in messages: |
|
if 'role' not in m: |
|
raise InvalidRequestError(message="messages: missing role", param='messages') |
|
elif m['role'] == 'function': |
|
raise InvalidRequestError(message="role: function is not supported.", param='messages') |
|
|
|
if 'content' not in m and "image_url" not in m: |
|
raise InvalidRequestError(message="messages: missing content", param='messages') |
|
|
|
|
|
object_type = 'chat.completions' if not stream else 'chat.completions.chunk' |
|
created_time = int(time.time()) |
|
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000)) |
|
resp_list = 'data' if is_legacy else 'choices' |
|
|
|
|
|
generate_params = process_parameters(body, is_legacy=is_legacy) |
|
continue_ = body['continue_'] |
|
|
|
|
|
if body['instruction_template_str']: |
|
instruction_template_str = body['instruction_template_str'] |
|
elif body['instruction_template']: |
|
instruction_template = body['instruction_template'] |
|
instruction_template = "Alpaca" if instruction_template == "None" else instruction_template |
|
instruction_template_str = load_instruction_template_memoized(instruction_template) |
|
else: |
|
instruction_template_str = shared.settings['instruction_template_str'] |
|
|
|
chat_template_str = body['chat_template_str'] or shared.settings['chat_template_str'] |
|
chat_instruct_command = body['chat_instruct_command'] or shared.settings['chat-instruct_command'] |
|
|
|
|
|
character = body['character'] or shared.settings['character'] |
|
character = "Assistant" if character == "None" else character |
|
name1 = body['user_name'] or shared.settings['name1'] |
|
name1, name2, _, greeting, context = load_character_memoized(character, name1, '') |
|
name2 = body['bot_name'] or name2 |
|
context = body['context'] or context |
|
greeting = body['greeting'] or greeting |
|
|
|
|
|
user_input, custom_system_message, history = convert_history(messages) |
|
|
|
generate_params.update({ |
|
'mode': body['mode'], |
|
'name1': name1, |
|
'name2': name2, |
|
'context': context, |
|
'greeting': greeting, |
|
'instruction_template_str': instruction_template_str, |
|
'custom_system_message': custom_system_message, |
|
'chat_template_str': chat_template_str, |
|
'chat-instruct_command': chat_instruct_command, |
|
'history': history, |
|
'stream': stream |
|
}) |
|
|
|
max_tokens = generate_params['max_new_tokens'] |
|
if max_tokens in [None, 0]: |
|
generate_params['max_new_tokens'] = 512 |
|
generate_params['auto_max_new_tokens'] = True |
|
|
|
requested_model = generate_params.pop('model') |
|
logprob_proc = generate_params.pop('logprob_proc', None) |
|
|
|
def chat_streaming_chunk(content): |
|
|
|
chunk = { |
|
"id": cmpl_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": shared.model_name, |
|
resp_list: [{ |
|
"index": 0, |
|
"finish_reason": None, |
|
|
|
"message": {'role': 'assistant', 'content': content}, |
|
"delta": {'role': 'assistant', 'content': content}, |
|
}], |
|
} |
|
|
|
if logprob_proc: |
|
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) |
|
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} |
|
|
|
|
|
return chunk |
|
|
|
if stream: |
|
yield chat_streaming_chunk('') |
|
|
|
|
|
prompt = generate_chat_prompt(user_input, generate_params) |
|
token_count = len(encode(prompt)[0]) |
|
debug_msg({'prompt': prompt, 'generate_params': generate_params}) |
|
|
|
generator = generate_chat_reply( |
|
user_input, generate_params, regenerate=False, _continue=continue_, loading_message=False) |
|
|
|
answer = '' |
|
seen_content = '' |
|
completion_token_count = 0 |
|
|
|
for a in generator: |
|
answer = a['internal'][-1][1] |
|
if stream: |
|
len_seen = len(seen_content) |
|
new_content = answer[len_seen:] |
|
|
|
if not new_content or chr(0xfffd) in new_content: |
|
continue |
|
|
|
seen_content = answer |
|
chunk = chat_streaming_chunk(new_content) |
|
yield chunk |
|
|
|
completion_token_count = len(encode(answer)[0]) |
|
stop_reason = "stop" |
|
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= generate_params['max_new_tokens']: |
|
stop_reason = "length" |
|
|
|
if stream: |
|
chunk = chat_streaming_chunk('') |
|
chunk[resp_list][0]['finish_reason'] = stop_reason |
|
chunk['usage'] = { |
|
"prompt_tokens": token_count, |
|
"completion_tokens": completion_token_count, |
|
"total_tokens": token_count + completion_token_count |
|
} |
|
|
|
yield chunk |
|
else: |
|
resp = { |
|
"id": cmpl_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": shared.model_name, |
|
resp_list: [{ |
|
"index": 0, |
|
"finish_reason": stop_reason, |
|
"message": {"role": "assistant", "content": answer} |
|
}], |
|
"usage": { |
|
"prompt_tokens": token_count, |
|
"completion_tokens": completion_token_count, |
|
"total_tokens": token_count + completion_token_count |
|
} |
|
} |
|
if logprob_proc: |
|
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) |
|
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} |
|
|
|
|
|
|
|
yield resp |
|
|
|
|
|
def completions_common(body: dict, is_legacy: bool = False, stream=False): |
|
object_type = 'text_completion.chunk' if stream else 'text_completion' |
|
created_time = int(time.time()) |
|
cmpl_id = "conv-%d" % (int(time.time() * 1000000000)) |
|
resp_list = 'data' if is_legacy else 'choices' |
|
|
|
prompt_str = 'context' if is_legacy else 'prompt' |
|
|
|
|
|
if prompt_str not in body: |
|
raise InvalidRequestError("Missing required input", param=prompt_str) |
|
|
|
|
|
generate_params = process_parameters(body, is_legacy=is_legacy) |
|
max_tokens = generate_params['max_new_tokens'] |
|
generate_params['stream'] = stream |
|
requested_model = generate_params.pop('model') |
|
logprob_proc = generate_params.pop('logprob_proc', None) |
|
suffix = body['suffix'] if body['suffix'] else '' |
|
echo = body['echo'] |
|
|
|
if not stream: |
|
prompt_arg = body[prompt_str] |
|
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)): |
|
prompt_arg = [prompt_arg] |
|
|
|
resp_list_data = [] |
|
total_completion_token_count = 0 |
|
total_prompt_token_count = 0 |
|
|
|
for idx, prompt in enumerate(prompt_arg, start=0): |
|
if isinstance(prompt[0], int): |
|
|
|
if requested_model == shared.model_name: |
|
prompt = decode(prompt)[0] |
|
else: |
|
try: |
|
encoder = tiktoken.encoding_for_model(requested_model) |
|
prompt = encoder.decode(prompt) |
|
except KeyError: |
|
prompt = decode(prompt)[0] |
|
|
|
prefix = prompt if echo else '' |
|
token_count = len(encode(prompt)[0]) |
|
total_prompt_token_count += token_count |
|
|
|
|
|
debug_msg({'prompt': prompt, 'generate_params': generate_params}) |
|
generator = generate_reply(prompt, generate_params, is_chat=False) |
|
answer = '' |
|
|
|
for a in generator: |
|
answer = a |
|
|
|
completion_token_count = len(encode(answer)[0]) |
|
total_completion_token_count += completion_token_count |
|
stop_reason = "stop" |
|
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens: |
|
stop_reason = "length" |
|
|
|
respi = { |
|
"index": idx, |
|
"finish_reason": stop_reason, |
|
"text": prefix + answer + suffix, |
|
"logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None, |
|
} |
|
|
|
resp_list_data.extend([respi]) |
|
|
|
resp = { |
|
"id": cmpl_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": shared.model_name, |
|
resp_list: resp_list_data, |
|
"usage": { |
|
"prompt_tokens": total_prompt_token_count, |
|
"completion_tokens": total_completion_token_count, |
|
"total_tokens": total_prompt_token_count + total_completion_token_count |
|
} |
|
} |
|
|
|
yield resp |
|
else: |
|
prompt = body[prompt_str] |
|
if isinstance(prompt, list): |
|
if prompt and isinstance(prompt[0], int): |
|
try: |
|
encoder = tiktoken.encoding_for_model(requested_model) |
|
prompt = encoder.decode(prompt) |
|
except KeyError: |
|
prompt = decode(prompt)[0] |
|
else: |
|
raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str) |
|
|
|
prefix = prompt if echo else '' |
|
token_count = len(encode(prompt)[0]) |
|
|
|
def text_streaming_chunk(content): |
|
|
|
chunk = { |
|
"id": cmpl_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": shared.model_name, |
|
resp_list: [{ |
|
"index": 0, |
|
"finish_reason": None, |
|
"text": content, |
|
"logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None, |
|
}], |
|
} |
|
|
|
return chunk |
|
|
|
yield text_streaming_chunk(prefix) |
|
|
|
|
|
debug_msg({'prompt': prompt, 'generate_params': generate_params}) |
|
generator = generate_reply(prompt, generate_params, is_chat=False) |
|
|
|
answer = '' |
|
seen_content = '' |
|
completion_token_count = 0 |
|
|
|
for a in generator: |
|
answer = a |
|
|
|
len_seen = len(seen_content) |
|
new_content = answer[len_seen:] |
|
|
|
if not new_content or chr(0xfffd) in new_content: |
|
continue |
|
|
|
seen_content = answer |
|
chunk = text_streaming_chunk(new_content) |
|
yield chunk |
|
|
|
completion_token_count = len(encode(answer)[0]) |
|
stop_reason = "stop" |
|
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens: |
|
stop_reason = "length" |
|
|
|
chunk = text_streaming_chunk(suffix) |
|
chunk[resp_list][0]["finish_reason"] = stop_reason |
|
chunk["usage"] = { |
|
"prompt_tokens": token_count, |
|
"completion_tokens": completion_token_count, |
|
"total_tokens": token_count + completion_token_count |
|
} |
|
|
|
yield chunk |
|
|
|
|
|
def chat_completions(body: dict, is_legacy: bool = False) -> dict: |
|
generator = chat_completions_common(body, is_legacy, stream=False) |
|
return deque(generator, maxlen=1).pop() |
|
|
|
|
|
def stream_chat_completions(body: dict, is_legacy: bool = False): |
|
for resp in chat_completions_common(body, is_legacy, stream=True): |
|
yield resp |
|
|
|
|
|
def completions(body: dict, is_legacy: bool = False) -> dict: |
|
generator = completions_common(body, is_legacy, stream=False) |
|
return deque(generator, maxlen=1).pop() |
|
|
|
|
|
def stream_completions(body: dict, is_legacy: bool = False): |
|
for resp in completions_common(body, is_legacy, stream=True): |
|
yield resp |
|
|