Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from transformers import pipeline | |
#pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True) | |
#client = InferenceClient("microsoft/Phi-3-mini-128k-instruct") | |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
#client = InferenceClient("google/gemma-1.1-7b-it") | |
pipe = pipeline("text-generation", model="internlm/internlm2_5-7b-chat", trust_remote_code=True) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in pipe.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a cybersecurity analyst who can interpret different types of logs resulting from various cyberattacks such as phishing attacks, malware attacks, advanced persistent threats, denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks, man-in-the-middle (MitM) attacks, SQL injection attacks, and zero-day exploits. Using logs such as login failures, event logs, firewall logs, and brute force logs, analyze the data and respond in English with your interpretation of the analysis.", | |
label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |