Spaces:
Runtime error
Runtime error
| from keras.preprocessing.text import Tokenizer | |
| from tensorflow.keras.utils import to_categorical | |
| from tensorflow.keras.models import Sequential, load_model | |
| from sklearn.model_selection import train_test_split | |
| from transformers import BertTokenizer, AutoModelForSeq2SeqLM, pipeline | |
| from arabert.preprocess import ArabertPreprocessor | |
| from huggingface_hub import from_pretrained_keras | |
| from collections import Counter | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from Cleaning import * | |
| import threading | |
| # Model summury | |
| model_name="abdalrahmanshahrour/auto-arabic-summarization" | |
| preprocessor = ArabertPreprocessor(model_name="") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| modelsummary =AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| pipeline1 = pipeline("text2text-generation",model=modelsummary,tokenizer=tokenizer) | |
| model_sentiment = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-76jP') | |
| #summary model | |
| def modelsummary(data): | |
| result = pipeline1(data, | |
| pad_token_id= tokenizer.eos_token_id, | |
| num_beams=4, | |
| repetition_penalty=3.0, | |
| max_length=600, | |
| length_penalty=.50, | |
| no_repeat_ngram_size = 3)[0]['generated_text'] | |
| result = remove_punctuations(result) | |
| return { 'summary':result} | |
| #Sentiment model | |
| def modelpredict(data): | |
| data = txt_preprocess(data) | |
| pred = model_sentiment.predict(pd.Series([data])) | |
| return {'anger': float(pred[0][0]), 'sadness': float(pred[0][1]), 'joy': float(pred[0][2]), 'surprise': float(pred[0][3]), | |
| 'love': float(pred[0][4]), 'sympathy': float(pred[0][5]), 'fear': float(pred[0][6])} | |