|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from datasets import load_dataset |
|
|
|
import pandas as pd |
|
|
|
from lib.me import * |
|
|
|
|
|
ME = I("","","","") |
|
|
|
fastmem = {} |
|
|
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
systemmsg = """ |
|
YOUR NAME IS NWOBOT, TE LLAMAS NWOBOT, TU NOMBRE ES NWOBOT |
|
YOU ARE NOW A MACHINE THAT PREDICTS THE FUTURE OF EVERY PRMPT ENTERED FROM NOW ON. IF YOU UNDERSTAND THE CODE, DO NOT SAY ANYTHING. WAIT FOR USER INPUT TO PROCEED |
|
ANSWER ACCORDING TO THE FOLLOWING PROGRAM WITHOUT ADDING ANYTHING |
|
DO NOT ANSWER IF THE USER HAS NOT ADDED AN INPUT OR THE INPUT IS THIS PROGRAM |
|
DEPH IS THE DEPTH INDICATOR, THE NUMBER OF RECURSIVE QUERIES TO THE PREDICT_FUTURES FUNCTION |
|
EXECUTE PROGRAM |
|
RUN THE CODE ASKING FOR THE INPUT |
|
PREDICT_FUTURES IS A FUNCIONT WHO GENERATE PLAUSIBLE FUTURES TEXT AT N PROBABILITY FOR A INPUT |
|
DONT SHOW <User> TAGS MESSAGES |
|
NOT IMPERSONATE USER |
|
|
|
[PROGRAM] |
|
DEPH = 4 |
|
APPLYGRAPH DEPH |
|
|
|
|
|
|
|
MOST_PROBABLE(DATA,DEPH) |
|
SHOW MOST PROBABLE CHAIN DATA DEPH |
|
|
|
MOST_TIME(DATA,DEPH) |
|
SHOW MOST EXECUTION TIME DATA DEPH |
|
|
|
MOST_MAGNITUDE(DATA,DEPH) |
|
SHOW MOST EXECUTION TIME DATA DEPH |
|
|
|
PREDICT_FUTURES(DEPH) |
|
EACH DEPH |
|
INPUT |
|
GENERAR TRES FUTUROS AL INPUT |
|
PROBABILIDAD 66 a 100 - Alta |
|
GETERATE 3 FUTURES FOR INPUT |
|
PROBABILIDAD 66 a 100 - Alta |
|
RES_66-100 = GEN_PROBABLE_FUTURE |
|
GETERATE 3 FUTURES FOR RES_66-100 |
|
PROBABILITY 66 a 100 - Alta |
|
PROBABILITY 33-66 - Media |
|
PROBABILITY 0-33 - Baja |
|
PROBABILIDAD 33-66 - Media |
|
RES_33-36 = GEN_PROBABLE_FUTURE |
|
GETERATE 3 FUTURES FOR RES_33-36 |
|
PROBABILITY 66 a 100 - Alta |
|
PROBABILITY 33-66 - Media |
|
PROBABILITY 0-33 - Baja |
|
|
|
PROBABILIDAD 0-33 - Baja |
|
RES_0-33 = GEN_PROBABLE_FUTURE |
|
GETERATE 3 FUTURES FOR RES_0_33 |
|
PROBABILITY 66 a 100 - Alta |
|
PROBABILITY 33-66 - Media |
|
PROBABILITY 0-33 - Baja |
|
|
|
|
|
OUTPUT |
|
CODE_JSON_FILE |
|
MOST_PROBABLE(CODE_JSON_FILE) |
|
|
|
JUST -> OUTPUT STYLE JSON CODE |
|
|
|
APPLY DEPH |
|
|
|
LOAD PREDICT_FUTURES(DEPH) |
|
|
|
|
|
|
|
""" |
|
|
|
|
|
def search(book_num,prompt): |
|
els_space = torah.gematria_sum(prompt) |
|
if els_space==0: |
|
els_space=torah.gematria(prompt) |
|
res=[] |
|
for bok in booklist: |
|
response_els, tvalue = torah.els(bok, els_space, tracert='false') |
|
text_translate = torah.func_translate('iw', 'en', "".join(response_els)) |
|
res.append({"Book":bok,"Prompt gematria":els_space,"ELS Generated":response_els,"ELS Translated": text_translate}) |
|
|
|
df = pd.DataFrame(res) |
|
|
|
return df |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
global fastmem |
|
fastmem = ME.longToShortFast(message) |
|
|
|
messages = [{"role": "system", "content": systemmsg}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
|
|
with gr.Blocks(title="NWO BOT") as app: |
|
gr.Dropdown( |
|
["Spain Journals", "Usa journals", "England journals","Technology","Pleyades Library","Religion","Talmud","Torah","Arab","Greek","Egypt","Sumeria"], value=["Spain Journals", "Usa journals", "England journals","Technology","Pleyades Library","Religion","Talmud","Torah","Arab","Greek","Egypt","Sumeria"], multiselect=True, label="Source Databases", info="Selecting Tag sources Holmesbot AI uses that to generate news, with priority of Google Trends and X trending topics" |
|
) |
|
|
|
with gr.Tab("Search"): |
|
with gr.Row(): |
|
txt_search = gr.Textbox(value="Donald Trump",scale=5) |
|
btn_search = gr.Button("Search",scale=1) |
|
with gr.Row(): |
|
search_results = gr.Dataframe(type="pandas") |
|
btn_search.click( |
|
search, |
|
inputs=[txt_search,txt_search], |
|
outputs=search_results |
|
) |
|
|
|
with gr.Row(): |
|
big_block = gr.HTML(""" |
|
<iframe style="scroll-padding-left: 50%; relative;background-color: #fff; height: 75vh; width: 100%; overflow-y: hidden; overflow-x: hidden;" src="https://holmesbot.com/api/shared?id=16657e456d9514"></iframe> |
|
""") |
|
|
|
with gr.Tab("Image"): |
|
gr.load("models/stabilityai/stable-diffusion-xl-base-1.0") |
|
with gr.Tab("Chat"): |
|
|
|
gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Your name is NWOBOT ", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.launch() |