Spaces:
Build error
Build error
| # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from hydra.core.config_store import ConfigStore | |
| from megatron.core import parallel_state | |
| from torch.utils.data import DataLoader, DistributedSampler | |
| from cosmos_predict1.diffusion.training.callbacks.iter_speed import IterSpeed | |
| from cosmos_predict1.diffusion.training.callbacks.low_precision import LowPrecisionCallback | |
| from cosmos_predict1.diffusion.training.datasets.dataset_3D import Dataset_3D | |
| from cosmos_predict1.diffusion.training.models.extend_model import FSDPExtendDiffusionModel | |
| from cosmos_predict1.diffusion.training.networks.general_dit_lvg import VideoExtendGeneralDIT | |
| from cosmos_predict1.utils import log | |
| from cosmos_predict1.utils.callback import ProgressBarCallback | |
| from cosmos_predict1.utils.callbacks.grad_clip import GradClip | |
| from cosmos_predict1.utils.lazy_config import PLACEHOLDER | |
| from cosmos_predict1.utils.lazy_config import LazyCall as L | |
| from cosmos_predict1.utils.lazy_config import LazyDict | |
| cs = ConfigStore.instance() | |
| base_path = "datasets/bridge/" | |
| train_annotation_path = os.path.join(base_path, "annotation/train") | |
| val_annotation_path = os.path.join(base_path, "annotation/val") | |
| test_annotation_path = os.path.join(base_path, "annotation/test") | |
| def get_sampler(dataset): | |
| return DistributedSampler( | |
| dataset, | |
| num_replicas=parallel_state.get_data_parallel_world_size(), | |
| rank=parallel_state.get_data_parallel_rank(), | |
| shuffle=True, | |
| seed=0, | |
| ) | |
| bridge_train_dataset = L(Dataset_3D)( | |
| train_annotation_path=train_annotation_path, | |
| val_annotation_path=val_annotation_path, | |
| test_annotation_path=test_annotation_path, | |
| video_path=base_path, | |
| sequence_interval=1, | |
| num_frames=57, | |
| cam_ids=[0], | |
| accumulate_action=False, | |
| video_size=[256, 320], | |
| val_start_frame_interval=1, | |
| mode="train", | |
| load_action=False, | |
| load_t5_embeddings=True, | |
| ) | |
| bridge_val_dataset = L(Dataset_3D)( | |
| train_annotation_path=train_annotation_path, | |
| val_annotation_path=val_annotation_path, | |
| test_annotation_path=test_annotation_path, | |
| video_path=base_path, | |
| sequence_interval=1, | |
| num_frames=57, | |
| cam_ids=[0], | |
| accumulate_action=False, | |
| video_size=[256, 320], | |
| val_start_frame_interval=1, | |
| mode="val", | |
| load_action=False, | |
| load_t5_embeddings=True, | |
| ) | |
| dataloader_train = L(DataLoader)( | |
| dataset=bridge_train_dataset, | |
| sampler=L(get_sampler)(dataset=bridge_train_dataset), | |
| batch_size=1, | |
| drop_last=True, | |
| pin_memory=True, | |
| num_workers=8, | |
| ) | |
| dataloader_val = L(DataLoader)( | |
| dataset=bridge_val_dataset, | |
| sampler=L(get_sampler)(dataset=bridge_val_dataset), | |
| batch_size=1, | |
| drop_last=True, | |
| pin_memory=True, | |
| num_workers=8, | |
| ) | |
| video2world_instruction_bridge_57frames = LazyDict( # This experiment is used to verify the expanded config is the same as BASE002_101_512N_FSDP_LR-143_VideoImage_1-1 | |
| dict( | |
| defaults=[ | |
| {"override /net": "faditv2_7b"}, | |
| {"override /conditioner": "video_cond"}, | |
| {"override /ckpt_klass": "fsdp"}, | |
| {"override /checkpoint": "local"}, | |
| {"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
| "_self_", | |
| ], | |
| job=dict( | |
| project="posttraining", | |
| group="diffusion_video2world_instruction", | |
| name="video2world_instruction_bridge_57frames", | |
| ), | |
| optimizer=dict( | |
| lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 | |
| weight_decay=0.1, | |
| betas=[0.9, 0.99], | |
| eps=1e-10, | |
| ), | |
| checkpoint=dict( | |
| save_iter=500, | |
| broadcast_via_filesystem=False, | |
| load_path="checkpoints/Cosmos-Predict1-7B-Video2World/model.pt", | |
| load_training_state=False, | |
| strict_resume=False, | |
| keys_not_to_resume=[], | |
| ), | |
| trainer=dict( | |
| max_iter=2_000, | |
| distributed_parallelism="fsdp", | |
| logging_iter=200, | |
| callbacks=dict( | |
| grad_clip=L(GradClip)( | |
| model_key="model", | |
| fsdp_enabled=True, | |
| ), | |
| low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
| iter_speed=L(IterSpeed)( | |
| every_n=10, | |
| hit_thres=0, | |
| ), | |
| progress_bar=L(ProgressBarCallback)(), | |
| ), | |
| ), | |
| model_parallel=dict( | |
| sequence_parallel=False, | |
| tensor_model_parallel_size=1, | |
| context_parallel_size=1, | |
| ), | |
| model=dict( | |
| # Use 16x8x32x40 latent shape for training | |
| latent_shape=[ | |
| 16, # Latent channel dim | |
| 8, # Latent temporal dim | |
| 32, # Latent height dim | |
| 40, # Latent width dim | |
| ], | |
| loss_reduce="mean", | |
| ema=dict( | |
| enabled=True, | |
| ), | |
| fsdp_enabled=True, | |
| fsdp=dict( | |
| policy="block", | |
| checkpoint=False, | |
| min_num_params=1024, | |
| sharding_group_size=32, | |
| sharding_strategy="hybrid", | |
| ), | |
| net=L(VideoExtendGeneralDIT)( | |
| rope_h_extrapolation_ratio=1, | |
| rope_w_extrapolation_ratio=1, | |
| rope_t_extrapolation_ratio=2, | |
| ), | |
| # Use Image VAE for training | |
| vae=dict(pixel_chunk_duration=57), | |
| conditioner=dict( | |
| video_cond_bool=dict( | |
| condition_location="first_random_n", | |
| cfg_unconditional_type="zero_condition_region_condition_mask", | |
| first_random_n_num_condition_t_max=1, | |
| apply_corruption_to_condition_region="noise_with_sigma", | |
| condition_on_augment_sigma=False, | |
| ) | |
| ), | |
| ), | |
| # using the video extend model for training | |
| model_obj=L(FSDPExtendDiffusionModel)( | |
| config=PLACEHOLDER, | |
| fsdp_checkpointer=PLACEHOLDER, | |
| ), | |
| # warming up for first 2500 steps~(when resume from 310000) | |
| scheduler=dict( | |
| warm_up_steps=[2500], | |
| cycle_lengths=[10000000000000], | |
| f_start=[1.0e-6], | |
| f_max=[1.0], | |
| f_min=[1.0], | |
| ), | |
| dataloader_train=dataloader_train, | |
| dataloader_val=dataloader_val, | |
| ) | |
| ) | |
| def register_experiments(cs): | |
| # Register the experiments | |
| for _item in [ | |
| video2world_instruction_bridge_57frames, | |
| ]: | |
| experiment_name = _item["job"]["name"] | |
| log.info(f"Registering experiment: {experiment_name}") | |
| cs.store( | |
| group="experiment", | |
| package="_global_", | |
| name=experiment_name, | |
| node=_item, | |
| ) | |