Spaces:
Build error
Build error
| # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import annotations | |
| import os | |
| import threading | |
| from typing import List, NamedTuple, Tuple | |
| import torch | |
| from cosmos_predict1.utils import distributed, log, misc | |
| from cosmos_predict1.utils.checkpointer import Checkpointer as BaseCheckpointer | |
| from cosmos_predict1.utils.model import Model | |
| TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2]) | |
| if TORCH_VERSION >= (1, 11): | |
| from torch.ao import quantization | |
| from torch.ao.quantization import FakeQuantizeBase, ObserverBase | |
| elif ( | |
| TORCH_VERSION >= (1, 8) | |
| and hasattr(torch.quantization, "FakeQuantizeBase") | |
| and hasattr(torch.quantization, "ObserverBase") | |
| ): | |
| from torch import quantization | |
| from torch.quantization import FakeQuantizeBase, ObserverBase | |
| class _IncompatibleKeys( | |
| NamedTuple( | |
| "IncompatibleKeys", | |
| [ | |
| ("missing_keys", List[str]), | |
| ("unexpected_keys", List[str]), | |
| ("incorrect_shapes", List[Tuple[str, Tuple[int], Tuple[int]]]), | |
| ], | |
| ) | |
| ): | |
| pass | |
| class MultiRankCheckpointer(BaseCheckpointer): | |
| def save( | |
| self, | |
| model: Model, | |
| optimizer: torch.optim.Optimizer, | |
| scheduler: torch.optim.lr_scheduler.LRScheduler, | |
| grad_scaler: torch.amp.GradScaler, | |
| iteration: int, | |
| ) -> None: | |
| """Save network weights, optimizer parameters, scheduler parameters to a checkpoint. | |
| Args: | |
| model (Model): The PyTorch model. | |
| optimizer (torch.optim.Optimizer): The model optimizer. | |
| scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler. | |
| grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training). | |
| iteration (int): Current iteration number. | |
| """ | |
| # checkpoint_file = f"iter_{iteration:09}.pt" | |
| postfix, _, total_ema_num = model.get_ckpt_postfix() | |
| checkpoint_file = f"iter_{iteration:09}{postfix}.pt" | |
| save_ranks = list(range(total_ema_num)) | |
| for _rank in save_ranks: | |
| if distributed.get_rank() == _rank: | |
| state_dict = dict( | |
| model=model.state_dict(), | |
| optimizer=optimizer.state_dict(), | |
| scheduler=scheduler.state_dict(), | |
| grad_scaler=grad_scaler.state_dict(), | |
| iteration=iteration, | |
| ) | |
| state_dict = misc.to(state_dict, device="cpu") | |
| self.callbacks.on_save_checkpoint(model, state_dict=state_dict) | |
| # Wait for previous saver thread to end. | |
| if self.save_thread: | |
| self.save_thread.join() | |
| # Run the checkpoint saver in a separate thread. | |
| self.save_thread = threading.Thread( | |
| target=self._save_worker_local, | |
| daemon=False, | |
| args=(state_dict, checkpoint_file, distributed.get_rank()), | |
| ) | |
| self.save_thread.start() | |
| def load( | |
| self, | |
| model: Model, | |
| optimizer: torch.optim.Optimizer | None = None, | |
| scheduler: torch.optim.lr_scheduler.LRScheduler | None = None, | |
| grad_scaler: torch.amp.GradScaler | None = None, | |
| ) -> int: | |
| """Load network weights and optimizer states from a checkpoint in a single process. | |
| The priority of the checkpoint loading logic is: | |
| 1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name. | |
| 2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path. | |
| - This is typically used for inference mode. | |
| - If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states. | |
| 3. If none of the above, randomly initialize the model parameters and train from scratch. | |
| Args: | |
| model (Model): The PyTorch model. | |
| optimizer (torch.optim.Optimizer | None): The model optimizer (default: None). | |
| scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None). | |
| grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training). | |
| Returns: | |
| iteration (int): the iteration number to start/resume from. | |
| """ | |
| latest_checkpoint_file = self._read_latest_checkpoint_file() | |
| if latest_checkpoint_file is not None: | |
| # different from base checkpointer, this support multi-EMA | |
| postfix, _, total_ema_num = model.get_ckpt_postfix() | |
| latest_checkpoint_file = latest_checkpoint_file.replace(".pt", f"{postfix}.pt") | |
| # 1. Resume training from latest_checkpoint.txt under the same name. | |
| checkpoint_dir = self.checkpoint_dir_local | |
| checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file) | |
| resume = True | |
| else: | |
| if self.load_path: | |
| # 2. Load the module weights specified by config_checkpoint.path. | |
| checkpoint_path = self.load_path | |
| # different from base checkpointer, this support multi-EMA | |
| postfix, _, total_ema_num = model.get_ckpt_postfix() | |
| checkpoint_path = checkpoint_path.replace(".pt", f"{postfix}.pt") | |
| resume = self.load_training_state | |
| else: | |
| # 3. Randomly initialize the model parameters and train from scratch. | |
| checkpoint_path = None | |
| resume = False | |
| # Load checkpoint. | |
| if checkpoint_path is not None: | |
| self._check_checkpoint_exists(checkpoint_path) | |
| log.info(f"Loading checkpoint (local): {checkpoint_path}") | |
| state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) | |
| log.success(f"Complete loading checkpoint (local): {checkpoint_path}") | |
| self.callbacks.on_load_checkpoint(model, state_dict=state_dict) | |
| # Load the state dicts. | |
| log.info("- Loading the model...") | |
| log.critical(model.load_state_dict(state_dict["model"], strict=self.strict_resume)) | |
| if resume: | |
| iteration = state_dict["iteration"] | |
| assert optimizer and scheduler | |
| log.info("- Loading the optimizer...") | |
| optimizer.load_state_dict(state_dict["optimizer"]) | |
| log.info("- Loading the scheduler...") | |
| scheduler.load_state_dict(state_dict["scheduler"]) | |
| scheduler.last_epoch = iteration | |
| log.info("- Loading the gradient scaler...") | |
| grad_scaler.load_state_dict(state_dict["grad_scaler"]) | |
| log.success(f"Done with loading the checkpoint (iteration {iteration}).") | |
| else: | |
| iteration = 0 | |
| log.success("Done with loading the checkpoint.") | |
| else: | |
| # Checkpoint not found and not specified. We will train everything from scratch. | |
| iteration = 0 | |
| log.info("Training from scratch.") | |
| torch.cuda.empty_cache() | |
| return iteration | |
| # https://github.com/facebookresearch/fvcore/blob/9d683aae73fb899dd35d6cf6720e5ef567761c57/fvcore/common/checkpoint.py | |
| def non_strict_load_model(model: torch.nn.Module, checkpoint_state_dict: dict) -> _IncompatibleKeys: | |
| # workaround https://github.com/pytorch/pytorch/issues/24139 | |
| model_state_dict = model.state_dict() | |
| incorrect_shapes = [] | |
| for k in list(checkpoint_state_dict.keys()): | |
| if k in model_state_dict: | |
| if "_extra_state" in k: # Key introduced by TransformerEngine for FP8 | |
| log.warning(f"Skipping key {k} introduced by TransformerEngine for FP8 in the checkpoint.") | |
| continue | |
| model_param = model_state_dict[k] | |
| # Allow mismatch for uninitialized parameters | |
| if TORCH_VERSION >= (1, 8) and isinstance(model_param, torch.nn.parameter.UninitializedParameter): | |
| continue | |
| if not isinstance(model_param, torch.Tensor): | |
| raise ValueError( | |
| f"Find non-tensor parameter {k} in the model. type: {type(model_param)} {type(checkpoint_state_dict[k])}, please check if this key is safe to skip or not." | |
| ) | |
| shape_model = tuple(model_param.shape) | |
| shape_checkpoint = tuple(checkpoint_state_dict[k].shape) | |
| if shape_model != shape_checkpoint: | |
| has_observer_base_classes = ( | |
| TORCH_VERSION >= (1, 8) | |
| and hasattr(quantization, "ObserverBase") | |
| and hasattr(quantization, "FakeQuantizeBase") | |
| ) | |
| if has_observer_base_classes: | |
| # Handle the special case of quantization per channel observers, | |
| # where buffer shape mismatches are expected. | |
| def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module: | |
| # foo.bar.param_or_buffer_name -> [foo, bar] | |
| key_parts = key.split(".")[:-1] | |
| cur_module = model | |
| for key_part in key_parts: | |
| cur_module = getattr(cur_module, key_part) | |
| return cur_module | |
| cls_to_skip = ( | |
| ObserverBase, | |
| FakeQuantizeBase, | |
| ) | |
| target_module = _get_module_for_key(model, k) | |
| if isinstance(target_module, cls_to_skip): | |
| # Do not remove modules with expected shape mismatches | |
| # them from the state_dict loading. They have special logic | |
| # in _load_from_state_dict to handle the mismatches. | |
| continue | |
| incorrect_shapes.append((k, shape_checkpoint, shape_model)) | |
| checkpoint_state_dict.pop(k) | |
| incompatible = model.load_state_dict(checkpoint_state_dict, strict=False) | |
| # Remove keys with "_extra_state" suffix, which are non-parameter items introduced by TransformerEngine for FP8 handling | |
| missing_keys = [k for k in incompatible.missing_keys if "_extra_state" not in k] | |
| unexpected_keys = [k for k in incompatible.unexpected_keys if "_extra_state" not in k] | |
| return _IncompatibleKeys( | |
| missing_keys=missing_keys, | |
| unexpected_keys=unexpected_keys, | |
| incorrect_shapes=incorrect_shapes, | |
| ) | |