Spaces:
Build error
Build error
| # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import torch | |
| import torch.distributed as dist | |
| from torch.autograd import Function | |
| class AllGather(Function): | |
| def forward(ctx, tensor, process_group): | |
| world_size = dist.get_world_size(process_group) | |
| ctx.world_size = world_size | |
| ctx.rank = process_group.rank() | |
| gathered_tensors = [torch.zeros_like(tensor) for _ in range(world_size)] | |
| dist.all_gather(gathered_tensors, tensor.contiguous(), process_group) | |
| return torch.cat(gathered_tensors, dim=0) | |
| def backward(ctx, grad_output): | |
| world_size = ctx.world_size | |
| rank = ctx.rank | |
| # Split the gradient tensor | |
| grad_chunks = grad_output.chunk(world_size) | |
| # Select the gradient chunk for the current rank | |
| grad_input = grad_chunks[rank] | |
| return grad_input, None | |
| def gather_along_first_dim(tensor, process_group): | |
| return AllGather.apply(tensor, process_group) | |
| class Scatter(Function): | |
| def forward(ctx, tensor, process_group): | |
| world_size = dist.get_world_size(process_group) | |
| ctx.world_size = world_size | |
| ctx.process_group = process_group | |
| rank = process_group.rank() | |
| # Split the tensor | |
| tensor_chunks = tensor.chunk(world_size) | |
| # Select the tensor chunk for the current rank | |
| return tensor_chunks[rank] | |
| def backward(ctx, grad_output): | |
| world_size = ctx.world_size | |
| process_group = ctx.process_group | |
| # Gather the gradient tensor | |
| gathered_grads = [torch.zeros_like(grad_output) for _ in range(world_size)] | |
| dist.all_gather(gathered_grads, grad_output.contiguous(), process_group) | |
| return torch.cat(gathered_grads, dim=0), None | |
| def scatter_along_first_dim(tensor, process_group): | |
| return Scatter.apply(tensor, process_group) | |
| if __name__ == "__main__": | |
| # Torch global setup for distributed training | |
| local_rank = int(os.environ["LOCAL_RANK"]) | |
| rank = int(os.environ["RANK"]) | |
| world_size = int(os.environ["WORLD_SIZE"]) | |
| torch.cuda.set_device(local_rank) | |
| torch.distributed.init_process_group(world_size=world_size, rank=rank) | |
| # Create a tensor with gradients | |
| x = torch.randn(10, 1, requires_grad=True, device="cuda") | |
| # Perform all_gather with gradient support | |
| y = gather_along_first_dim(x, dist.group.WORLD) | |
| print(f"{y.shape=}") | |
| y = scatter_along_first_dim(y, dist.group.WORLD) | |
| print(f"{y.shape=}") | |
| # Use the result in your computation | |
| loss = y.sum() | |
| loss.backward() | |
| # x.grad now contains the gradients | |
| print(x.grad) | |