|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from apex.multi_tensor_apply import multi_tensor_applier |
|
|
|
from cosmos_transfer1.utils import distributed, log |
|
|
|
|
|
class FusedAdam(torch.optim.Optimizer): |
|
"""Implements Adam algorithm. |
|
|
|
Currently GPU-only. Requires Apex to be installed via |
|
``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. |
|
|
|
This version of fused Adam implements 2 fusions. |
|
|
|
* Fusion of the Adam update's elementwise operations |
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters |
|
into one or a few kernel launches. |
|
|
|
:class:`apex.optimizers.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``, |
|
or ``torch.optim.Adam`` with ``adam_w_mode=False``:: |
|
|
|
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) |
|
... |
|
opt.step() |
|
|
|
:class:`apex.optimizers.FusedAdam` may be used with or without Amp. If you wish to use :class:`FusedAdam` with Amp, |
|
you may choose any ``opt_level``:: |
|
|
|
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) |
|
model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") |
|
... |
|
opt.step() |
|
|
|
In general, ``opt_level="O1"`` is recommended. |
|
|
|
|
|
.. warning:: |
|
A previous version of :class:`FusedAdam` allowed a number of additional arguments to ``step``. |
|
These additional arguments are now deprecated and unnecessary. |
|
|
|
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) NOT SUPPORTED in FusedAdam! |
|
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay |
|
True for decoupled weight decay(also known as AdamW) (default: True) |
|
capturable (bool, optional): whether to use the version of the optimizer |
|
that can be used with CUDA Graphs. (default: False) |
|
master_weights (bool, optional): whether to maintain FP32 master weights |
|
in the optimizer with FP16 mixed precision training, currently can |
|
only be used with capturable set to True. (default: False) |
|
|
|
.. _Adam - A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
bias_correction=True, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
adam_w_mode=True, |
|
weight_decay=0.0, |
|
amsgrad=False, |
|
capturable=False, |
|
master_weights=False, |
|
): |
|
if amsgrad: |
|
raise RuntimeError("FusedAdam does not support the AMSGrad variant.") |
|
if master_weights and not capturable: |
|
raise RuntimeError("Master weights is currently only supported with the capturable version.") |
|
|
|
log.warning(f"FusedAdam master_weights: {master_weights} capturable: {capturable}") |
|
lr = torch.tensor(lr, dtype=torch.float32) if capturable else lr |
|
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay) |
|
super(FusedAdam, self).__init__(params, defaults) |
|
self.adam_w_mode = 1 if adam_w_mode else 0 |
|
|
|
self.capturable = capturable |
|
self.master_weights = master_weights |
|
|
|
self.param_groups_master = None |
|
|
|
if capturable: |
|
for idx, group in enumerate(self.param_groups): |
|
if len(group["params"]) == 0: |
|
continue |
|
device = group["params"][0].device |
|
for item in ["lr"]: |
|
if isinstance(group[item], float): |
|
group[item] = torch.tensor(group[item], dtype=torch.float32) |
|
self.param_groups[idx][item] = group[item].to(device=device) |
|
|
|
self._step_supports_amp_scaling = True |
|
|
|
if multi_tensor_applier.available: |
|
import amp_C |
|
|
|
|
|
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda") |
|
self.multi_tensor_adam = amp_C.multi_tensor_adam |
|
self.multi_tensor_adam_capturable = amp_C.multi_tensor_adam_capturable |
|
self.multi_tensor_adam_capturable_master = amp_C.multi_tensor_adam_capturable_master |
|
else: |
|
raise RuntimeError("apex.optimizers.FusedAdam requires cuda extensions") |
|
|
|
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
|
|
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. |
|
""" |
|
if any(p is not None for p in [grads, output_params, scale, grad_norms]): |
|
raise RuntimeError( |
|
"FusedAdam has been updated. " |
|
"Simply initialize it identically to torch.optim.Adam, and call step() with no arguments." |
|
) |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
if self.param_groups_master is None: |
|
|
|
self.param_groups_master = [] |
|
for i, pg in enumerate(self.param_groups): |
|
param_list = pg["params"] |
|
self.param_groups_master.append( |
|
{ |
|
"params": [p.clone().detach().float() if self.master_weights else None for p in param_list], |
|
} |
|
) |
|
|
|
for group, group_master in zip(self.param_groups, self.param_groups_master): |
|
if len(group["params"]) == 0: |
|
continue |
|
device = group["params"][0].device |
|
bias_correction = 1 if "bias_correction" in group and group["bias_correction"] else 0 |
|
beta1, beta2 = group["betas"] |
|
|
|
|
|
|
|
if "step" in group: |
|
if self.capturable: |
|
group["step"] = ( |
|
group["step"].to(device=device) |
|
if isinstance(group["step"], torch.Tensor) |
|
else torch.tensor(group["step"], dtype=torch.int32, device=device) |
|
) |
|
group["step"] += (self._dummy_overflow_buf != 1).to(torch.int) |
|
else: |
|
group["step"] += 1 |
|
else: |
|
group["step"] = 1 if not self.capturable else torch.tensor([1], dtype=torch.int, device=device) |
|
|
|
if self.capturable: |
|
group["lr"] = ( |
|
group["lr"].to(device=device) |
|
if isinstance(group["lr"], torch.Tensor) |
|
else torch.tensor(group["lr"], dtype=torch.float32, device=device) |
|
) |
|
|
|
|
|
g_16, p_16, m_16, v_16 = [], [], [], [] |
|
g_bf, p_bf, m_bf, v_bf = [], [], [], [] |
|
g_32, p_32, m_32, v_32 = [], [], [], [] |
|
p_16_master = [] |
|
p_32_master = [] |
|
bf16_master = [] |
|
|
|
for p, p_master in zip(group["params"], group_master["params"]): |
|
if p.grad is None: |
|
continue |
|
if p.grad.data.is_sparse: |
|
raise RuntimeError( |
|
"FusedAdam does not support sparse gradients, please consider SparseAdam instead" |
|
) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
state["exp_avg"] = torch.zeros_like(p.data).float() |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p.data).float() |
|
|
|
if p.dtype == torch.float16: |
|
if self.master_weights: |
|
p_16_master.append(p_master.data) |
|
g_16.append(p.grad.data) |
|
p_16.append(p.data) |
|
m_16.append(state["exp_avg"]) |
|
v_16.append(state["exp_avg_sq"]) |
|
elif p.dtype == torch.bfloat16: |
|
if self.master_weights: |
|
bf16_master.append(p_master.data) |
|
g_bf.append(p.grad) |
|
p_bf.append(p) |
|
m_bf.append(state["exp_avg"]) |
|
v_bf.append(state["exp_avg_sq"]) |
|
elif p.dtype == torch.float32: |
|
if self.master_weights: |
|
p_32_master.append(p_master.data) |
|
g_32.append(p.grad.data) |
|
p_32.append(p.data) |
|
m_32.append(state["exp_avg"]) |
|
v_32.append(state["exp_avg_sq"]) |
|
else: |
|
raise RuntimeError("FusedAdam only support fp16 and fp32.") |
|
|
|
|
|
|
|
if self.capturable: |
|
|
|
found_inf = ( |
|
grad_scaler._check_inf_per_device(self)[device] |
|
if grad_scaler is not None |
|
else torch.zeros((1,), device=device) |
|
) |
|
self._dummy_overflow_buf.copy_(found_inf) |
|
|
|
|
|
scale, inv_scale = None, None |
|
if grad_scaler: |
|
scale = grad_scaler._get_scale_async() |
|
inv_scale = scale.double().reciprocal().float() |
|
else: |
|
scale = torch.ones((1,), device=device, dtype=torch.float32) |
|
inv_scale = torch.ones((1,), device=device, dtype=torch.float32) |
|
|
|
if len(g_16) > 0: |
|
multi_tensor_applier( |
|
( |
|
self.multi_tensor_adam_capturable_master |
|
if self.master_weights |
|
else self.multi_tensor_adam_capturable |
|
), |
|
self._dummy_overflow_buf, |
|
[g_16, p_16, m_16, v_16, p_16_master] if self.master_weights else [g_16, p_16, m_16, v_16], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
inv_scale, |
|
) |
|
|
|
if len(g_bf) > 0: |
|
multi_tensor_applier( |
|
( |
|
self.multi_tensor_adam_capturable_master |
|
if self.master_weights |
|
else self.multi_tensor_adam_capturable |
|
), |
|
self._dummy_overflow_buf, |
|
[g_bf, p_bf, m_bf, v_bf, bf16_master] if self.master_weights else [g_bf, p_bf, m_bf, v_bf], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
inv_scale, |
|
) |
|
|
|
if len(g_32) > 0: |
|
multi_tensor_applier( |
|
( |
|
self.multi_tensor_adam_capturable_master |
|
if self.master_weights |
|
else self.multi_tensor_adam_capturable |
|
), |
|
self._dummy_overflow_buf, |
|
[g_32, p_32, m_32, v_32, p_32_master] if self.master_weights else [g_32, p_32, m_32, v_32], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
inv_scale, |
|
) |
|
else: |
|
if len(g_16) > 0: |
|
multi_tensor_applier( |
|
self.multi_tensor_adam, |
|
self._dummy_overflow_buf, |
|
[g_16, p_16, m_16, v_16], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
|
|
if len(g_bf) > 0: |
|
multi_tensor_applier( |
|
self.multi_tensor_adam, |
|
self._dummy_overflow_buf, |
|
[g_bf, p_bf, m_bf, v_bf], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
|
|
if len(g_32) > 0: |
|
multi_tensor_applier( |
|
self.multi_tensor_adam, |
|
self._dummy_overflow_buf, |
|
[g_32, p_32, m_32, v_32], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
|
|
return loss |
|
|
|
def load_state_dict(self, state_dict): |
|
super().load_state_dict(state_dict) |
|
for group in self.param_groups: |
|
if self.capturable: |
|
group["lr"] = ( |
|
group["lr"].cuda() |
|
if isinstance(group["lr"], torch.Tensor) |
|
else torch.tensor(group["lr"], dtype=torch.float32).cuda() |
|
) |
|
|
|
if "step" in group: |
|
if self.capturable: |
|
if distributed.get_rank() == 0: |
|
step = ( |
|
group["step"].cuda() |
|
if isinstance(group["step"], torch.Tensor) |
|
else torch.tensor([group["step"]], dtype=torch.int32).cuda() |
|
) |
|
else: |
|
step = torch.zeros(1, dtype=torch.int32).cuda() |
|
|
|
distributed.broadcast(step, 0) |
|
group["step"] = step |
|
elif isinstance(group["step"], torch.Tensor): |
|
group["step"] = group["step"].item() |
|
for p in group["params"]: |
|
state = self.state[p] |
|
if "exp_avg" in state: |
|
state["exp_avg"] = state["exp_avg"].float() |
|
state["exp_avg_sq"] = state["exp_avg_sq"].float() |
|
|