pg56714's picture
Upload 11 files
c7e95b3 verified
raw
history blame
14.6 kB
import os
import sys
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
# os.chdir("../")
import cv2
import gradio as gr
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import torch
import tempfile
from stable_diffusion_inpaint import fill_img_with_sd, replace_img_with_sd
from lama_inpaint import (
inpaint_img_with_lama,
build_lama_model,
inpaint_img_with_builded_lama,
)
from utils import (
load_img_to_array,
save_array_to_img,
dilate_mask,
show_mask,
show_points,
)
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry
import argparse
def setup_args(parser):
parser.add_argument(
"--lama_config",
type=str,
default="./lama/configs/prediction/default.yaml",
help="The path to the config file of lama model. "
"Default: the config of big-lama",
)
parser.add_argument(
"--lama_ckpt",
type=str,
default="pretrained_models/big-lama",
help="The path to the lama checkpoint.",
)
parser.add_argument(
"--sam_ckpt",
type=str,
default="./pretrained_models/sam_vit_h_4b8939.pth",
help="The path to the SAM checkpoint to use for mask generation.",
)
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def get_sam_feat(img):
model["sam"].set_image(img)
features = model["sam"].features
orig_h = model["sam"].orig_h
orig_w = model["sam"].orig_w
input_h = model["sam"].input_h
input_w = model["sam"].input_w
model["sam"].reset_image()
return features, orig_h, orig_w, input_h, input_w
def get_fill_img_with_sd(image, mask, image_resolution, text_prompt):
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape) == 3:
mask = mask[:, :, 0]
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
mask = cv2.resize(
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
)
img_fill = fill_img_with_sd(np_image, mask, text_prompt, device=device)
img_fill = img_fill.astype(np.uint8)
return img_fill
def get_replace_img_with_sd(image, mask, image_resolution, text_prompt):
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape) == 3:
mask = mask[:, :, 0]
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
mask = cv2.resize(
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
)
img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device)
img_replaced = img_replaced.astype(np.uint8)
return img_replaced
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
k = float(resolution) / min(H, W)
H = int(np.round(H * k / 64.0)) * 64
W = int(np.round(W * k / 64.0)) * 64
img = cv2.resize(
input_image,
(W, H),
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
)
return img
def resize_points(clicked_points, original_shape, resolution):
original_height, original_width, _ = original_shape
original_height = float(original_height)
original_width = float(original_width)
scale_factor = float(resolution) / min(original_height, original_width)
resized_points = []
for point in clicked_points:
x, y, lab = point
resized_x = int(round(x * scale_factor))
resized_y = int(round(y * scale_factor))
resized_point = (resized_x, resized_y, lab)
resized_points.append(resized_point)
return resized_points
def get_click_mask(
clicked_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size
):
# model['sam'].set_image(image)
model["sam"].is_image_set = True
model["sam"].features = features
model["sam"].orig_h = orig_h
model["sam"].orig_w = orig_w
model["sam"].input_h = input_h
model["sam"].input_w = input_w
# Separate the points and labels
points, labels = zip(*[(point[:2], point[2]) for point in clicked_points])
# Convert the points and labels to numpy arrays
input_point = np.array(points)
input_label = np.array(labels)
masks, _, _ = model["sam"].predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
if dilate_kernel_size is not None:
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
else:
masks = [mask for mask in masks]
return masks
def process_image_click(
original_image,
point_prompt,
clicked_points,
image_resolution,
features,
orig_h,
orig_w,
input_h,
input_w,
dilate_kernel_size,
evt: gr.SelectData,
):
if clicked_points is None:
clicked_points = []
# print("Received click event:", evt)
if original_image is None:
# print("No image loaded.")
return None, clicked_points, None
clicked_coords = evt.index
if clicked_coords is None:
# print("No valid coordinates received.")
return None, clicked_points, None
x, y = clicked_coords
label = point_prompt
lab = 1 if label == "Foreground Point" else 0
clicked_points.append((x, y, lab))
# print("Updated points list:", clicked_points)
input_image = np.array(original_image, dtype=np.uint8)
H, W, C = input_image.shape
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
# print("Processed image size:", img.shape)
resized_points = resize_points(clicked_points, input_image.shape, image_resolution)
mask_click_np = get_click_mask(
resized_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size
)
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
mask_image = HWC3(mask_click_np.astype(np.uint8))
mask_image = cv2.resize(mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
# print("Mask image prepared.")
edited_image = input_image
for x, y, lab in clicked_points:
color = (255, 0, 0) if lab == 1 else (0, 0, 255)
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)
opacity_mask = 0.75
opacity_edited = 1.0
overlay_image = cv2.addWeighted(
edited_image,
opacity_edited,
(mask_image * np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
opacity_mask,
0,
)
no_mask_overlay = edited_image.copy()
return no_mask_overlay, overlay_image, clicked_points, mask_image
def image_upload(image, image_resolution):
if image is None:
return None, None, None, None, None, None
else:
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image)
return image, features, orig_h, orig_w, input_h, input_w
def get_inpainted_img(image, mask, image_resolution):
lama_config = args.lama_config
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape) == 3:
mask = mask[:, :, 0]
img_inpainted = inpaint_img_with_builded_lama(
model["lama"], image, mask, lama_config, device=device
)
return img_inpainted
# get args
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
# build models
model = {}
# build the sam model
model_type = "vit_h"
ckpt_p = args.sam_ckpt
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_sam.to(device=device)
model["sam"] = SamPredictor(model_sam)
# build the lama model
lama_config = args.lama_config
lama_ckpt = args.lama_ckpt
device = "cuda" if torch.cuda.is_available() else "cpu"
model["lama"] = build_lama_model(lama_config, lama_ckpt, device=device)
button_size = (100, 50)
with gr.Blocks() as demo:
clicked_points = gr.State([])
# origin_image = gr.State(None)
click_mask = gr.State(None)
features = gr.State(None)
orig_h = gr.State(None)
orig_w = gr.State(None)
input_h = gr.State(None)
input_w = gr.State(None)
with gr.Row():
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Upload an image and click the region you want to edit.")
with gr.Row():
source_image_click = gr.Image(
type="numpy",
interactive=True,
label="Upload and Edit Image",
)
image_edit_complete = gr.Image(
type="numpy",
interactive=False,
label="Editing Complete",
)
with gr.Row():
point_prompt = gr.Radio(
choices=["Foreground Point", "Background Point"],
value="Foreground Point",
label="Point Label",
interactive=True,
show_label=False,
)
image_resolution = gr.Slider(
label="Image Resolution",
minimum=256,
maximum=768,
value=512,
step=64,
)
dilate_kernel_size = gr.Slider(
label="Dilate Kernel Size", minimum=0, maximum=30, value=15, step=1
)
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Control Panel")
text_prompt = gr.Textbox(label="Text Prompt")
lama = gr.Button("Inpaint Image", variant="primary")
fill_sd = gr.Button("Fill Anything with SD", variant="primary")
replace_sd = gr.Button("Replace Anything with SD", variant="primary")
clear_button_image = gr.Button(value="Reset", variant="secondary")
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
gr.Markdown("## Mask")
with gr.Row():
click_mask = gr.Image(
type="numpy",
label="Click Mask",
interactive=False,
)
with gr.Column():
with gr.Row():
gr.Markdown("## Image Removed with Mask")
with gr.Row():
img_rm_with_mask = gr.Image(
type="numpy",
label="Image Removed with Mask",
interactive=False,
)
with gr.Column():
with gr.Row():
gr.Markdown("## Fill Anything with Mask")
with gr.Row():
img_fill_with_mask = gr.Image(
type="numpy",
label="Image Fill Anything with Mask",
interactive=False,
)
with gr.Column():
with gr.Row():
gr.Markdown("## Replace Anything with Mask")
with gr.Row():
img_replace_with_mask = gr.Image(
type="numpy",
label="Image Replace Anything with Mask",
interactive=False,
)
source_image_click.upload(
image_upload,
inputs=[source_image_click, image_resolution],
outputs=[source_image_click, features, orig_h, orig_w, input_h, input_w],
)
source_image_click.select(
process_image_click,
inputs=[
source_image_click,
point_prompt,
clicked_points,
image_resolution,
features,
orig_h,
orig_w,
input_h,
input_w,
dilate_kernel_size,
],
outputs=[source_image_click, image_edit_complete, clicked_points, click_mask],
show_progress=True,
queue=True,
)
lama.click(
get_inpainted_img,
inputs=[source_image_click, click_mask, image_resolution],
outputs=[img_rm_with_mask],
)
fill_sd.click(
get_fill_img_with_sd,
inputs=[source_image_click, click_mask, image_resolution, text_prompt],
outputs=[img_fill_with_mask],
)
replace_sd.click(
get_replace_img_with_sd,
inputs=[source_image_click, click_mask, image_resolution, text_prompt],
outputs=[img_replace_with_mask],
)
def reset(*args):
return [None for _ in args]
clear_button_image.click(
reset,
inputs=[
source_image_click,
image_edit_complete,
clicked_points,
click_mask,
features,
img_rm_with_mask,
img_fill_with_mask,
img_replace_with_mask,
],
outputs=[
source_image_click,
image_edit_complete,
clicked_points,
click_mask,
features,
img_rm_with_mask,
img_fill_with_mask,
img_replace_with_mask,
],
)
if __name__ == "__main__":
demo.launch(debug=False, show_error=True)