Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) | |
# os.chdir("../") | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from pathlib import Path | |
from matplotlib import pyplot as plt | |
import torch | |
import tempfile | |
from stable_diffusion_inpaint import fill_img_with_sd, replace_img_with_sd | |
from lama_inpaint import ( | |
inpaint_img_with_lama, | |
build_lama_model, | |
inpaint_img_with_builded_lama, | |
) | |
from utils import ( | |
load_img_to_array, | |
save_array_to_img, | |
dilate_mask, | |
show_mask, | |
show_points, | |
) | |
from PIL import Image | |
from segment_anything import SamPredictor, sam_model_registry | |
import argparse | |
def setup_args(parser): | |
parser.add_argument( | |
"--lama_config", | |
type=str, | |
default="./lama/configs/prediction/default.yaml", | |
help="The path to the config file of lama model. " | |
"Default: the config of big-lama", | |
) | |
parser.add_argument( | |
"--lama_ckpt", | |
type=str, | |
default="pretrained_models/big-lama", | |
help="The path to the lama checkpoint.", | |
) | |
parser.add_argument( | |
"--sam_ckpt", | |
type=str, | |
default="./pretrained_models/sam_vit_h_4b8939.pth", | |
help="The path to the SAM checkpoint to use for mask generation.", | |
) | |
def mkstemp(suffix, dir=None): | |
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir) | |
os.close(fd) | |
return Path(path) | |
def get_sam_feat(img): | |
model["sam"].set_image(img) | |
features = model["sam"].features | |
orig_h = model["sam"].orig_h | |
orig_w = model["sam"].orig_w | |
input_h = model["sam"].input_h | |
input_w = model["sam"].input_w | |
model["sam"].reset_image() | |
return features, orig_h, orig_w, input_h, input_w | |
def get_fill_img_with_sd(image, mask, image_resolution, text_prompt): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if len(mask.shape) == 3: | |
mask = mask[:, :, 0] | |
np_image = np.array(image, dtype=np.uint8) | |
H, W, C = np_image.shape | |
np_image = HWC3(np_image) | |
np_image = resize_image(np_image, image_resolution) | |
mask = cv2.resize( | |
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST | |
) | |
img_fill = fill_img_with_sd(np_image, mask, text_prompt, device=device) | |
img_fill = img_fill.astype(np.uint8) | |
return img_fill | |
def get_replace_img_with_sd(image, mask, image_resolution, text_prompt): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if len(mask.shape) == 3: | |
mask = mask[:, :, 0] | |
np_image = np.array(image, dtype=np.uint8) | |
H, W, C = np_image.shape | |
np_image = HWC3(np_image) | |
np_image = resize_image(np_image, image_resolution) | |
mask = cv2.resize( | |
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST | |
) | |
img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device) | |
img_replaced = img_replaced.astype(np.uint8) | |
return img_replaced | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
k = float(resolution) / min(H, W) | |
H = int(np.round(H * k / 64.0)) * 64 | |
W = int(np.round(W * k / 64.0)) * 64 | |
img = cv2.resize( | |
input_image, | |
(W, H), | |
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA, | |
) | |
return img | |
def resize_points(clicked_points, original_shape, resolution): | |
original_height, original_width, _ = original_shape | |
original_height = float(original_height) | |
original_width = float(original_width) | |
scale_factor = float(resolution) / min(original_height, original_width) | |
resized_points = [] | |
for point in clicked_points: | |
x, y, lab = point | |
resized_x = int(round(x * scale_factor)) | |
resized_y = int(round(y * scale_factor)) | |
resized_point = (resized_x, resized_y, lab) | |
resized_points.append(resized_point) | |
return resized_points | |
def get_click_mask( | |
clicked_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size | |
): | |
# model['sam'].set_image(image) | |
model["sam"].is_image_set = True | |
model["sam"].features = features | |
model["sam"].orig_h = orig_h | |
model["sam"].orig_w = orig_w | |
model["sam"].input_h = input_h | |
model["sam"].input_w = input_w | |
# Separate the points and labels | |
points, labels = zip(*[(point[:2], point[2]) for point in clicked_points]) | |
# Convert the points and labels to numpy arrays | |
input_point = np.array(points) | |
input_label = np.array(labels) | |
masks, _, _ = model["sam"].predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=False, | |
) | |
if dilate_kernel_size is not None: | |
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks] | |
else: | |
masks = [mask for mask in masks] | |
return masks | |
def process_image_click( | |
original_image, | |
point_prompt, | |
clicked_points, | |
image_resolution, | |
features, | |
orig_h, | |
orig_w, | |
input_h, | |
input_w, | |
dilate_kernel_size, | |
evt: gr.SelectData, | |
): | |
if clicked_points is None: | |
clicked_points = [] | |
# print("Received click event:", evt) | |
if original_image is None: | |
# print("No image loaded.") | |
return None, clicked_points, None | |
clicked_coords = evt.index | |
if clicked_coords is None: | |
# print("No valid coordinates received.") | |
return None, clicked_points, None | |
x, y = clicked_coords | |
label = point_prompt | |
lab = 1 if label == "Foreground Point" else 0 | |
clicked_points.append((x, y, lab)) | |
# print("Updated points list:", clicked_points) | |
input_image = np.array(original_image, dtype=np.uint8) | |
H, W, C = input_image.shape | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
# print("Processed image size:", img.shape) | |
resized_points = resize_points(clicked_points, input_image.shape, image_resolution) | |
mask_click_np = get_click_mask( | |
resized_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size | |
) | |
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0 | |
mask_image = HWC3(mask_click_np.astype(np.uint8)) | |
mask_image = cv2.resize(mask_image, (W, H), interpolation=cv2.INTER_LINEAR) | |
# print("Mask image prepared.") | |
edited_image = input_image | |
for x, y, lab in clicked_points: | |
color = (255, 0, 0) if lab == 1 else (0, 0, 255) | |
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1) | |
opacity_mask = 0.75 | |
opacity_edited = 1.0 | |
overlay_image = cv2.addWeighted( | |
edited_image, | |
opacity_edited, | |
(mask_image * np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8), | |
opacity_mask, | |
0, | |
) | |
no_mask_overlay = edited_image.copy() | |
return no_mask_overlay, overlay_image, clicked_points, mask_image | |
def image_upload(image, image_resolution): | |
if image is None: | |
return None, None, None, None, None, None | |
else: | |
np_image = np.array(image, dtype=np.uint8) | |
H, W, C = np_image.shape | |
np_image = HWC3(np_image) | |
np_image = resize_image(np_image, image_resolution) | |
features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image) | |
return image, features, orig_h, orig_w, input_h, input_w | |
def get_inpainted_img(image, mask, image_resolution): | |
lama_config = args.lama_config | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if len(mask.shape) == 3: | |
mask = mask[:, :, 0] | |
img_inpainted = inpaint_img_with_builded_lama( | |
model["lama"], image, mask, lama_config, device=device | |
) | |
return img_inpainted | |
# get args | |
parser = argparse.ArgumentParser() | |
setup_args(parser) | |
args = parser.parse_args(sys.argv[1:]) | |
# build models | |
model = {} | |
# build the sam model | |
model_type = "vit_h" | |
ckpt_p = args.sam_ckpt | |
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_sam.to(device=device) | |
model["sam"] = SamPredictor(model_sam) | |
# build the lama model | |
lama_config = args.lama_config | |
lama_ckpt = args.lama_ckpt | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model["lama"] = build_lama_model(lama_config, lama_ckpt, device=device) | |
button_size = (100, 50) | |
with gr.Blocks() as demo: | |
clicked_points = gr.State([]) | |
# origin_image = gr.State(None) | |
click_mask = gr.State(None) | |
features = gr.State(None) | |
orig_h = gr.State(None) | |
orig_w = gr.State(None) | |
input_h = gr.State(None) | |
input_w = gr.State(None) | |
with gr.Row(): | |
with gr.Column(variant="panel"): | |
with gr.Row(): | |
gr.Markdown("## Upload an image and click the region you want to edit.") | |
with gr.Row(): | |
source_image_click = gr.Image( | |
type="numpy", | |
interactive=True, | |
label="Upload and Edit Image", | |
) | |
image_edit_complete = gr.Image( | |
type="numpy", | |
interactive=False, | |
label="Editing Complete", | |
) | |
with gr.Row(): | |
point_prompt = gr.Radio( | |
choices=["Foreground Point", "Background Point"], | |
value="Foreground Point", | |
label="Point Label", | |
interactive=True, | |
show_label=False, | |
) | |
image_resolution = gr.Slider( | |
label="Image Resolution", | |
minimum=256, | |
maximum=768, | |
value=512, | |
step=64, | |
) | |
dilate_kernel_size = gr.Slider( | |
label="Dilate Kernel Size", minimum=0, maximum=30, value=15, step=1 | |
) | |
with gr.Column(variant="panel"): | |
with gr.Row(): | |
gr.Markdown("## Control Panel") | |
text_prompt = gr.Textbox(label="Text Prompt") | |
lama = gr.Button("Inpaint Image", variant="primary") | |
fill_sd = gr.Button("Fill Anything with SD", variant="primary") | |
replace_sd = gr.Button("Replace Anything with SD", variant="primary") | |
clear_button_image = gr.Button(value="Reset", variant="secondary") | |
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("## Mask") | |
with gr.Row(): | |
click_mask = gr.Image( | |
type="numpy", | |
label="Click Mask", | |
interactive=False, | |
) | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("## Image Removed with Mask") | |
with gr.Row(): | |
img_rm_with_mask = gr.Image( | |
type="numpy", | |
label="Image Removed with Mask", | |
interactive=False, | |
) | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("## Fill Anything with Mask") | |
with gr.Row(): | |
img_fill_with_mask = gr.Image( | |
type="numpy", | |
label="Image Fill Anything with Mask", | |
interactive=False, | |
) | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("## Replace Anything with Mask") | |
with gr.Row(): | |
img_replace_with_mask = gr.Image( | |
type="numpy", | |
label="Image Replace Anything with Mask", | |
interactive=False, | |
) | |
source_image_click.upload( | |
image_upload, | |
inputs=[source_image_click, image_resolution], | |
outputs=[source_image_click, features, orig_h, orig_w, input_h, input_w], | |
) | |
source_image_click.select( | |
process_image_click, | |
inputs=[ | |
source_image_click, | |
point_prompt, | |
clicked_points, | |
image_resolution, | |
features, | |
orig_h, | |
orig_w, | |
input_h, | |
input_w, | |
dilate_kernel_size, | |
], | |
outputs=[source_image_click, image_edit_complete, clicked_points, click_mask], | |
show_progress=True, | |
queue=True, | |
) | |
lama.click( | |
get_inpainted_img, | |
inputs=[source_image_click, click_mask, image_resolution], | |
outputs=[img_rm_with_mask], | |
) | |
fill_sd.click( | |
get_fill_img_with_sd, | |
inputs=[source_image_click, click_mask, image_resolution, text_prompt], | |
outputs=[img_fill_with_mask], | |
) | |
replace_sd.click( | |
get_replace_img_with_sd, | |
inputs=[source_image_click, click_mask, image_resolution, text_prompt], | |
outputs=[img_replace_with_mask], | |
) | |
def reset(*args): | |
return [None for _ in args] | |
clear_button_image.click( | |
reset, | |
inputs=[ | |
source_image_click, | |
image_edit_complete, | |
clicked_points, | |
click_mask, | |
features, | |
img_rm_with_mask, | |
img_fill_with_mask, | |
img_replace_with_mask, | |
], | |
outputs=[ | |
source_image_click, | |
image_edit_complete, | |
clicked_points, | |
click_mask, | |
features, | |
img_rm_with_mask, | |
img_fill_with_mask, | |
img_replace_with_mask, | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=False, show_error=True) | |