Inpaint-Maething / utils /mask_processing.py
pg56714's picture
Upload 13 files
7e0cd5c verified
raw
history blame
6.56 kB
import cv2
from matplotlib import pyplot as plt
import PIL.Image as Image
import numpy as np
def crop_for_filling_pre(image: np.array, mask: np.array, crop_size: int = 512):
# Calculate the aspect ratio of the image
height, width = image.shape[:2]
aspect_ratio = float(width) / float(height)
# If the shorter side is less than 512, resize the image proportionally
if min(height, width) < crop_size:
if height < width:
new_height = crop_size
new_width = int(new_height * aspect_ratio)
else:
new_width = crop_size
new_height = int(new_width / aspect_ratio)
image = cv2.resize(image, (new_width, new_height))
mask = cv2.resize(mask, (new_width, new_height))
# Find the bounding box of the mask
x, y, w, h = cv2.boundingRect(mask)
# Update the height and width of the resized image
height, width = image.shape[:2]
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly
if w > crop_size or h > crop_size:
# padding to square at first
if height < width:
padding = width - height
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant')
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant')
else:
padding = height - width
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant')
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant')
resize_factor = crop_size / max(w, h)
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor)
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor)
x, y, w, h = cv2.boundingRect(mask)
# Calculate the crop coordinates
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size)
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size)
# Crop the image
cropped_image = image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
cropped_mask = mask[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
return cropped_image, cropped_mask
def crop_for_filling_post(
image: np.array,
mask: np.array,
filled_image: np.array,
crop_size: int = 512,
):
image_copy = image.copy()
mask_copy = mask.copy()
# Calculate the aspect ratio of the image
height, width = image.shape[:2]
height_ori, width_ori = height, width
aspect_ratio = float(width) / float(height)
# If the shorter side is less than 512, resize the image proportionally
if min(height, width) < crop_size:
if height < width:
new_height = crop_size
new_width = int(new_height * aspect_ratio)
else:
new_width = crop_size
new_height = int(new_width / aspect_ratio)
image = cv2.resize(image, (new_width, new_height))
mask = cv2.resize(mask, (new_width, new_height))
# Find the bounding box of the mask
x, y, w, h = cv2.boundingRect(mask)
# Update the height and width of the resized image
height, width = image.shape[:2]
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly
if w > crop_size or h > crop_size:
flag_padding = True
# padding to square at first
if height < width:
padding = width - height
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant')
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant')
padding_side = 'h'
else:
padding = height - width
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant')
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant')
padding_side = 'w'
resize_factor = crop_size / max(w, h)
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor)
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor)
x, y, w, h = cv2.boundingRect(mask)
else:
flag_padding = False
# Calculate the crop coordinates
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size)
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size)
# Fill the image
image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] = filled_image
if flag_padding:
image = cv2.resize(image, (0, 0), fx=1/resize_factor, fy=1/resize_factor)
if padding_side == 'h':
image = image[padding // 2:padding // 2 + height_ori, :]
else:
image = image[:, padding // 2:padding // 2 + width_ori]
image = cv2.resize(image, (width_ori, height_ori))
image_copy[mask_copy==255] = image[mask_copy==255]
return image_copy
if __name__ == '__main__':
# image = cv2.imread('example/boat.jpg')
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE)
image = cv2.imread('./example/groceries.jpg')
mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/bridge.jpg')
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/person_umbrella.jpg')
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/hippopotamus.jpg')
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE)
cropped_image, cropped_mask = crop_for_filling_pre(image, mask)
# ^ ------------------------------------------------------------------------------------
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask
# ^ ------------------------------------------------------------------------------------
# e.g.
# cropped_image[cropped_mask==255] = 0
cv2.imwrite('cropped_image.jpg', cropped_image)
cv2.imwrite('cropped_mask.jpg', cropped_mask)
print(cropped_image.shape)
print(cropped_mask.shape)
image = crop_for_filling_post(image, mask, cropped_image)
cv2.imwrite('filled_image.jpg', image)
print(image.shape)