Spaces:
Configuration error
Configuration error
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import dataclasses | |
import warnings | |
from abc import ABC, abstractmethod | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union | |
import numpy as np | |
from packaging import version | |
from ..utils import TensorType, is_torch_available, is_vision_available, logging | |
from .utils import ParameterFormat, compute_effective_axis_dimension, compute_serialized_parameters_size | |
if TYPE_CHECKING: | |
from ..configuration_utils import PretrainedConfig | |
from ..feature_extraction_utils import FeatureExtractionMixin | |
from ..image_processing_utils import ImageProcessingMixin | |
from ..tokenization_utils_base import PreTrainedTokenizerBase | |
if is_vision_available(): | |
from PIL import Image | |
logger = logging.get_logger(__name__) | |
DEFAULT_ONNX_OPSET = 11 | |
# 2 Gb | |
EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024 | |
class PatchingSpec: | |
""" | |
Data class that holds patching specifications. | |
Args: | |
o: Module / object where the op to patch is located | |
name: Name of the op to monkey patch | |
custom_op: Custom op that patches the original op | |
orig_op: Original op that is being patched | |
op_wrapper: Wrapper (optional) that wraps both the original and custom ops. | |
It is useful for ops that are class or static methods for instance. | |
""" | |
o: Any | |
name: str | |
custom_op: Callable | |
orig_op: Optional[Callable] = None | |
op_wrapper: Optional[Callable] = None | |
class OnnxConfig(ABC): | |
""" | |
Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format. | |
""" | |
default_fixed_batch = 2 | |
default_fixed_sequence = 8 | |
default_fixed_num_choices = 4 | |
torch_onnx_minimum_version = version.parse("1.8") | |
_tasks_to_common_outputs = { | |
"causal-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), | |
"default": OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}), | |
"image-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), | |
"image-segmentation": OrderedDict( | |
{ | |
"logits": {0: "batch", 1: "sequence"}, | |
"pred_boxes": {0: "batch", 1: "sequence"}, | |
"pred_masks": {0: "batch", 1: "sequence"}, | |
} | |
), | |
"masked-im": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), | |
"masked-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), | |
"multiple-choice": OrderedDict({"logits": {0: "batch"}}), | |
"object-detection": OrderedDict( | |
{ | |
"logits": {0: "batch", 1: "sequence"}, | |
"pred_boxes": {0: "batch", 1: "sequence"}, | |
} | |
), | |
"question-answering": OrderedDict( | |
{ | |
"start_logits": {0: "batch", 1: "sequence"}, | |
"end_logits": {0: "batch", 1: "sequence"}, | |
} | |
), | |
"semantic-segmentation": OrderedDict({"logits": {0: "batch", 1: "num_labels", 2: "height", 3: "width"}}), | |
"seq2seq-lm": OrderedDict({"logits": {0: "batch", 1: "decoder_sequence"}}), | |
"sequence-classification": OrderedDict({"logits": {0: "batch"}}), | |
"token-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), | |
"vision2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), | |
"speech2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), | |
} | |
def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None): | |
self._config = config | |
if task not in self._tasks_to_common_outputs: | |
raise ValueError( | |
f"{task} is not a supported task, supported tasks: {self._tasks_to_common_outputs.keys()}" | |
) | |
self.task = task | |
self._patching_specs = [] | |
for spec in patching_specs if patching_specs is not None else []: | |
final_spec = spec | |
if spec.orig_op is None: | |
final_spec = dataclasses.replace(spec, orig_op=getattr(spec.o, spec.name)) | |
self._patching_specs.append(final_spec) | |
def from_model_config(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfig": | |
""" | |
Instantiate a OnnxConfig for a specific model | |
Args: | |
config: The model's configuration to use when exporting to ONNX | |
Returns: | |
OnnxConfig for this model | |
""" | |
return cls(config, task=task) | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
""" | |
Mapping containing the axis definition of the input tensors to provide to the model | |
Returns: | |
For each input: its name associated to the axes symbolic name and the axis position within the tensor | |
""" | |
raise NotImplementedError() | |
def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
""" | |
Mapping containing the axis definition of the output tensors to provide to the model | |
Returns: | |
For each output: its name associated to the axes symbolic name and the axis position within the tensor | |
""" | |
common_outputs = self._tasks_to_common_outputs[self.task] | |
return copy.deepcopy(common_outputs) | |
def values_override(self) -> Optional[Mapping[str, Any]]: | |
""" | |
Dictionary of keys to override in the model's config before exporting | |
Returns: | |
Dictionary with the keys (and their corresponding values) to override | |
""" | |
if hasattr(self._config, "use_cache"): | |
return {"use_cache": False} | |
return None | |
def default_batch_size(self) -> int: | |
""" | |
The default batch size to use if no other indication | |
Returns: | |
Integer > 0 | |
""" | |
# Using 2 avoid ONNX making assumption about single sample batch | |
return OnnxConfig.default_fixed_batch | |
def default_sequence_length(self) -> int: | |
""" | |
The default sequence length to use if no other indication | |
Returns: | |
Integer > 0 | |
""" | |
return OnnxConfig.default_fixed_sequence | |
def default_num_choices(self) -> int: | |
""" | |
The default number of choices to use if no other indication | |
Returns: | |
Integer > 0 | |
""" | |
return OnnxConfig.default_fixed_num_choices | |
def default_onnx_opset(self) -> int: | |
""" | |
Which onnx opset to use when exporting the model | |
Returns: | |
Integer ONNX Opset version | |
""" | |
return DEFAULT_ONNX_OPSET | |
def atol_for_validation(self) -> float: | |
""" | |
What absolute tolerance value to use during model conversion validation. | |
Returns: | |
Float absolute tolerance value. | |
""" | |
return 1e-5 | |
def is_torch_support_available(self) -> bool: | |
""" | |
The minimum PyTorch version required to export the model. | |
Returns: | |
`bool`: Whether the installed version of PyTorch is compatible with the model. | |
""" | |
if is_torch_available(): | |
from transformers.utils import get_torch_version | |
return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version | |
else: | |
return False | |
def use_external_data_format(num_parameters: int) -> bool: | |
""" | |
Flag indicating if the model requires using external data format | |
Args: | |
num_parameters: Number of parameter on the model | |
Returns: | |
True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise | |
""" | |
return ( | |
compute_serialized_parameters_size(num_parameters, ParameterFormat.Float) | |
>= EXTERNAL_DATA_FORMAT_SIZE_LIMIT | |
) | |
def _generate_dummy_images( | |
self, batch_size: int = 2, num_channels: int = 3, image_height: int = 40, image_width: int = 40 | |
): | |
images = [] | |
for _ in range(batch_size): | |
data = np.random.rand(image_height, image_width, num_channels) * 255 | |
images.append(Image.fromarray(data.astype("uint8")).convert("RGB")) | |
return images | |
def _generate_dummy_audio( | |
self, batch_size: int = 2, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220 | |
): | |
audio_data = [] | |
for _ in range(batch_size): | |
# time variable | |
t = np.linspace(0, time_duration, int(time_duration * sampling_rate), endpoint=False) | |
# generate pure sine wave at `frequency` Hz | |
audio_data.append(0.5 * np.sin(2 * np.pi * frequency * t)) | |
return audio_data | |
def generate_dummy_inputs( | |
self, | |
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin", "ImageProcessingMixin"], | |
batch_size: int = -1, | |
seq_length: int = -1, | |
num_choices: int = -1, | |
is_pair: bool = False, | |
framework: Optional[TensorType] = None, | |
num_channels: int = 3, | |
image_width: int = 40, | |
image_height: int = 40, | |
sampling_rate: int = 22050, | |
time_duration: float = 5.0, | |
frequency: int = 220, | |
tokenizer: "PreTrainedTokenizerBase" = None, | |
) -> Mapping[str, Any]: | |
""" | |
Generate inputs to provide to the ONNX exporter for the specific framework | |
Args: | |
preprocessor: ([`PreTrainedTokenizerBase`], [`FeatureExtractionMixin`], or [`ImageProcessingMixin`]): | |
The preprocessor associated with this model configuration. | |
batch_size (`int`, *optional*, defaults to -1): | |
The batch size to export the model for (-1 means dynamic axis). | |
num_choices (`int`, *optional*, defaults to -1): | |
The number of candidate answers provided for multiple choice task (-1 means dynamic axis). | |
seq_length (`int`, *optional*, defaults to -1): | |
The sequence length to export the model for (-1 means dynamic axis). | |
is_pair (`bool`, *optional*, defaults to `False`): | |
Indicate if the input is a pair (sentence 1, sentence 2) | |
framework (`TensorType`, *optional*, defaults to `None`): | |
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of channels of the generated images. | |
image_width (`int`, *optional*, defaults to 40): | |
The width of the generated images. | |
image_height (`int`, *optional*, defaults to 40): | |
The height of the generated images. | |
sampling_rate (`int`, *optional* defaults to 22050) | |
The sampling rate for audio data generation. | |
time_duration (`float`, *optional* defaults to 5.0) | |
Total seconds of sampling for audio data generation. | |
frequency (`int`, *optional* defaults to 220) | |
The desired natural frequency of generated audio. | |
Returns: | |
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function | |
""" | |
from ..feature_extraction_utils import FeatureExtractionMixin | |
from ..image_processing_utils import ImageProcessingMixin | |
from ..tokenization_utils_base import PreTrainedTokenizerBase | |
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: | |
raise ValueError("You cannot provide both a tokenizer and a preprocessor to generate dummy inputs.") | |
if tokenizer is not None: | |
warnings.warn( | |
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" | |
" `preprocessor` instead.", | |
FutureWarning, | |
) | |
logger.warning("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") | |
preprocessor = tokenizer | |
if isinstance(preprocessor, PreTrainedTokenizerBase): | |
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX | |
batch_size = compute_effective_axis_dimension( | |
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 | |
) | |
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX | |
token_to_add = preprocessor.num_special_tokens_to_add(is_pair) | |
seq_length = compute_effective_axis_dimension( | |
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add | |
) | |
# Generate dummy inputs according to compute batch and sequence | |
input_token = ( | |
preprocessor.unk_token | |
if (preprocessor.unk_token is not None and len(preprocessor.unk_token) > 0) | |
else "0" | |
) | |
dummy_input = [" ".join([input_token]) * seq_length] * batch_size | |
if self.task == "multiple-choice": | |
# If dynamic axis (-1) we forward with a fixed dimension of 4 candidate answers to avoid optimizations | |
# made by ONNX | |
num_choices = compute_effective_axis_dimension( | |
num_choices, fixed_dimension=OnnxConfig.default_fixed_num_choices, num_token_to_add=0 | |
) | |
dummy_input = dummy_input * num_choices | |
# The shape of the tokenized inputs values is [batch_size * num_choices, seq_length] | |
tokenized_input = preprocessor(dummy_input, text_pair=dummy_input) | |
# Unflatten the tokenized inputs values expanding it to the shape [batch_size, num_choices, seq_length] | |
for k, v in tokenized_input.items(): | |
tokenized_input[k] = [v[i : i + num_choices] for i in range(0, len(v), num_choices)] | |
return dict(tokenized_input.convert_to_tensors(tensor_type=framework)) | |
return dict(preprocessor(dummy_input, return_tensors=framework)) | |
elif isinstance(preprocessor, ImageProcessingMixin): | |
if preprocessor.model_input_names[0] != "pixel_values": | |
raise ValueError( | |
f"The `preprocessor` is an image processor ({preprocessor.__class__.__name__}) and expects" | |
f' `model_input_names[0]` to be "pixel_values", but got {preprocessor.model_input_names[0]}' | |
) | |
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX | |
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) | |
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) | |
return dict(preprocessor(images=dummy_input, return_tensors=framework)) | |
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values": | |
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX | |
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) | |
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) | |
return dict(preprocessor(images=dummy_input, return_tensors=framework)) | |
elif ( | |
isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "input_features" | |
): | |
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX | |
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) | |
dummy_input = self._generate_dummy_audio(batch_size, sampling_rate, time_duration, frequency) | |
return dict(preprocessor(dummy_input, return_tensors=framework)) | |
else: | |
raise ValueError( | |
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." | |
) | |
def generate_dummy_inputs_onnxruntime(self, reference_model_inputs: Mapping[str, Any]) -> Mapping[str, Any]: | |
""" | |
Generate inputs for ONNX Runtime using the reference model inputs. Override this to run inference with seq2seq | |
models which have the encoder and decoder exported as separate ONNX files. | |
Args: | |
reference_model_inputs ([`Mapping[str, Tensor]`): | |
Reference inputs for the model. | |
Returns: | |
`Mapping[str, Tensor]`: The mapping holding the kwargs to provide to the model's forward function | |
""" | |
return reference_model_inputs | |
def patch_ops(self): | |
for spec in self._patching_specs: | |
custom_op = spec.custom_op if spec.op_wrapper is None else spec.op_wrapper(spec.custom_op) | |
setattr(spec.o, spec.name, custom_op) | |
def restore_ops(self): | |
for spec in self._patching_specs: | |
orig_op = spec.orig_op if spec.op_wrapper is None else spec.op_wrapper(spec.orig_op) | |
setattr(spec.o, spec.name, orig_op) | |
def flatten_output_collection_property(cls, name: str, field: Iterable[Any]) -> Dict[str, Any]: | |
""" | |
Flatten any potential nested structure expanding the name of the field with the index of the element within the | |
structure. | |
Args: | |
name: The name of the nested structure | |
field: The structure to, potentially, be flattened | |
Returns: | |
(Dict[str, Any]): Outputs with flattened structure and key mapping this new structure. | |
""" | |
from itertools import chain | |
return {f"{name}.{idx}": item for idx, item in enumerate(chain.from_iterable(field))} | |
class OnnxConfigWithPast(OnnxConfig, ABC): | |
def __init__( | |
self, | |
config: "PretrainedConfig", | |
task: str = "default", | |
patching_specs: List[PatchingSpec] = None, | |
use_past: bool = False, | |
): | |
super().__init__(config, task=task, patching_specs=patching_specs) | |
self.use_past = use_past | |
def with_past(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfigWithPast": | |
""" | |
Instantiate a OnnxConfig with `use_past` attribute set to True | |
Args: | |
config: The underlying model's config to use when exporting to ONNX | |
Returns: | |
OnnxConfig with `.use_past = True` | |
""" | |
return cls(config, task=task, use_past=True) | |
def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
common_outputs = super().outputs | |
if self.use_past: | |
self.fill_with_past_key_values_(common_outputs, direction="outputs") | |
return common_outputs | |
def values_override(self) -> Optional[Mapping[str, Any]]: | |
if hasattr(self._config, "use_cache"): | |
return {"use_cache": self.use_past} | |
return None | |
def num_layers(self) -> int: | |
""" | |
The number of layers attribute retrieved from the model config. Override this for model configs where the | |
number of layers attribute is not called `num_layers`. | |
""" | |
if not hasattr(self._config, "num_layers"): | |
raise AttributeError( | |
"could not find the number of layers attribute in the model configuration, override the num_layers" | |
" property of the model OnnxConfig to solve this" | |
) | |
return self._config.num_layers | |
def num_attention_heads(self) -> int: | |
""" | |
The number of attention heads attribute retrieved from the model config. Override this for model configs where | |
the number of attention heads attribute is not called `num_attention_heads`. | |
""" | |
if not hasattr(self._config, "num_attention_heads"): | |
raise AttributeError( | |
"could not find the number of attention heads attribute in the model configuration, override the" | |
" num_attention_heads property of the model OnnxConfig to solve this" | |
) | |
return self._config.num_attention_heads | |
def generate_dummy_inputs( | |
self, | |
tokenizer: "PreTrainedTokenizerBase", | |
batch_size: int = -1, | |
seq_length: int = -1, | |
is_pair: bool = False, | |
framework: Optional[TensorType] = None, | |
) -> Mapping[str, Any]: | |
# TODO: should we set seq_length = 1 when self.use_past = True? | |
common_inputs = super().generate_dummy_inputs( | |
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
) | |
if self.use_past: | |
if not is_torch_available(): | |
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | |
else: | |
import torch | |
batch, seqlen = common_inputs["input_ids"].shape | |
# Not using the same length for past_key_values | |
past_key_values_length = seqlen + 2 | |
shape = ( | |
batch, | |
self.num_attention_heads, | |
past_key_values_length, | |
self._config.hidden_size // self.num_attention_heads, | |
) | |
if "attention_mask" in common_inputs: | |
mask_dtype = common_inputs["attention_mask"].dtype | |
common_inputs["attention_mask"] = torch.cat( | |
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], | |
dim=1, | |
) | |
common_inputs["past_key_values"] = [] | |
for _ in range(self.num_layers): | |
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) | |
return common_inputs | |
def fill_with_past_key_values_( | |
self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str, inverted_values_shape: bool = False | |
): | |
""" | |
Fill the input_or_outputs mapping with past_key_values dynamic axes considering. | |
Args: | |
inputs_or_outputs: The mapping to fill. | |
direction: either "inputs" or "outputs", it specifies whether input_or_outputs is the input mapping or the | |
output mapping, this is important for axes naming. | |
inverted_values_shape: | |
If `True`, store values on dynamic axis 1, else on axis 2. | |
""" | |
if direction not in ["inputs", "outputs"]: | |
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given') | |
name = "past_key_values" if direction == "inputs" else "present" | |
for i in range(self.num_layers): | |
inputs_or_outputs[f"{name}.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} | |
if inverted_values_shape: | |
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 1: "past_sequence + sequence"} | |
else: | |
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} | |
def _flatten_past_key_values_(self, flattened_output, name, idx, t): | |
flattened_output[f"{name}.{idx}.key"] = t[0] | |
flattened_output[f"{name}.{idx}.value"] = t[1] | |
def flatten_output_collection_property(self, name: str, field: Iterable[Any]) -> Dict[str, Any]: | |
flattened_output = {} | |
if name in ["present", "past_key_values"]: | |
for idx, t in enumerate(field): | |
self._flatten_past_key_values_(flattened_output, name, idx, t) | |
else: | |
flattened_output = super().flatten_output_collection_property(name, field) | |
return flattened_output | |
class OnnxSeq2SeqConfigWithPast(OnnxConfigWithPast): | |
def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
common_outputs = super(OnnxConfigWithPast, self).outputs | |
# Renaming the outputs axes properly. | |
for name, axes_names in common_outputs.items(): | |
sequence_name = "encoder_sequence" if "encoder" in name else "decoder_sequence" | |
for axis_idx, name in axes_names.items(): | |
if "sequence" in name: | |
axes_names[axis_idx] = sequence_name | |
# We reset the value as the order in common_outputs (OrderedDict) is lost otherwise | |
else: | |
axes_names[axis_idx] = name | |
if self.use_past: | |
self.fill_with_past_key_values_(common_outputs, direction="outputs") | |
return common_outputs | |
def num_layers(self) -> Tuple[int]: | |
try: | |
num_layers = super().num_layers | |
num_layers = (num_layers, num_layers) | |
except AttributeError: | |
if hasattr(self._config, "encoder_layers") and hasattr(self._config, "decoder_layers"): | |
num_layers = (self._config.encoder_layers, self._config.decoder_layers) | |
else: | |
raise AttributeError( | |
"could not find the number of encoder and decoder layers attributes in the model configuration," | |
" override the num_layers property of the model OnnxConfig to solve this" | |
) | |
return num_layers | |
def num_attention_heads(self) -> Tuple[int]: | |
try: | |
num_attention_heads = super().num_attention_heads | |
num_attention_heads = (num_attention_heads, num_attention_heads) | |
except AttributeError: | |
if hasattr(self._config, "encoder_attention_heads") and hasattr(self._config, "decoder_attention_heads"): | |
num_attention_heads = (self._config.encoder_attention_heads, self._config.decoder_attention_heads) | |
else: | |
raise AttributeError( | |
"could not find the number of attention heads for the encoder and the decoder attributes in the" | |
" model configuration, override the num_attention_heads property of the model OnnxConfig to solve" | |
" this" | |
) | |
return num_attention_heads | |
def generate_dummy_inputs( | |
self, | |
tokenizer: "PreTrainedTokenizerBase", | |
batch_size: int = -1, | |
seq_length: int = -1, | |
is_pair: bool = False, | |
framework: Optional[TensorType] = None, | |
) -> Mapping[str, Any]: | |
encoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( | |
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
) | |
# Generate decoder inputs | |
decoder_seq_length = seq_length if not self.use_past else 1 | |
decoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( | |
tokenizer, batch_size=batch_size, seq_length=decoder_seq_length, is_pair=is_pair, framework=framework | |
) | |
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} | |
common_inputs = dict(**encoder_inputs, **decoder_inputs) | |
if self.use_past: | |
if not is_torch_available(): | |
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | |
else: | |
import torch | |
batch = common_inputs["input_ids"].shape[0] | |
encoder_seq_length = common_inputs["input_ids"].shape[1] | |
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] | |
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads | |
encoder_shape = ( | |
batch, | |
num_encoder_attention_heads, | |
encoder_seq_length, | |
self._config.hidden_size // num_encoder_attention_heads, | |
) | |
decoder_shape = ( | |
batch, | |
num_decoder_attention_heads, | |
# Not using the same length for past_key_values | |
decoder_seq_length + 3, | |
self._config.hidden_size // num_decoder_attention_heads, | |
) | |
common_inputs["past_key_values"] = [] | |
# If the number of encoder and decoder layers are present in the model configuration, both are considered | |
num_encoder_layers, num_decoder_layers = self.num_layers | |
min_num_layers = min(num_encoder_layers, num_decoder_layers) | |
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers | |
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" | |
for _ in range(min_num_layers): | |
# For encoder-decoder models, past_key_values contains pre-computed values for both the encoder and the | |
# decoder layers, hence a tuple of 4 tensors instead of 2 | |
common_inputs["past_key_values"].append( | |
( | |
torch.zeros(decoder_shape), | |
torch.zeros(decoder_shape), | |
torch.zeros(encoder_shape), | |
torch.zeros(encoder_shape), | |
) | |
) | |
# TODO: test this. | |
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape | |
for _ in range(min_num_layers, max_num_layers): | |
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) | |
return common_inputs | |
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str): | |
if direction not in ["inputs", "outputs"]: | |
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given') | |
name = "past_key_values" if direction == "inputs" else "present" | |
# If the number of encoder and decoder layers are present in the model configuration, both are considered | |
num_encoder_layers, num_decoder_layers = self.num_layers | |
min_num_layers = min(num_encoder_layers, num_decoder_layers) | |
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers | |
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" | |
encoder_sequence = "past_encoder_sequence" | |
decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence" | |
for i in range(min_num_layers): | |
inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence} | |
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence} | |
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence} | |
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence} | |
for i in range(min_num_layers, max_num_layers): | |
if remaining_side_name == "encoder": | |
axes_info = {0: "batch", 2: encoder_sequence} | |
else: | |
axes_info = {0: "batch", 2: decoder_sequence} | |
inputs_or_outputs[f"{name}.{i}.{remaining_side_name}.key"] = axes_info | |
def _flatten_past_key_values_(self, flattened_output, name, idx, t): | |
flattened_output[f"{name}.{idx}.decoder.key"] = t[0] | |
flattened_output[f"{name}.{idx}.decoder.value"] = t[1] | |
flattened_output[f"{name}.{idx}.encoder.key"] = t[2] | |
flattened_output[f"{name}.{idx}.encoder.value"] = t[3] | |