|
|
|
|
|
from __future__ import annotations |
|
|
|
import pathlib |
|
|
|
import gradio as gr |
|
|
|
from model import Model |
|
|
|
DESCRIPTION = '# [CBNetV2](https://github.com/VDIGPKU/CBNetV2)' |
|
|
|
model = Model() |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_image = gr.Image(label='Input Image', type='numpy') |
|
with gr.Row(): |
|
detector_name = gr.Dropdown(label='Detector', |
|
choices=list(model.models.keys()), |
|
value=model.model_name) |
|
with gr.Row(): |
|
detect_button = gr.Button('Detect') |
|
detection_results = gr.Variable() |
|
with gr.Column(): |
|
with gr.Row(): |
|
detection_visualization = gr.Image(label='Detection Result', |
|
type='numpy') |
|
with gr.Row(): |
|
visualization_score_threshold = gr.Slider( |
|
label='Visualization Score Threshold', |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.3) |
|
with gr.Row(): |
|
redraw_button = gr.Button('Redraw') |
|
|
|
with gr.Row(): |
|
paths = sorted(pathlib.Path('images').rglob('*.jpg')) |
|
gr.Examples(examples=[[path.as_posix()] for path in paths], |
|
inputs=input_image) |
|
|
|
detector_name.change(fn=model.set_model_name, |
|
inputs=[detector_name], |
|
outputs=None) |
|
detect_button.click(fn=model.detect_and_visualize, |
|
inputs=[ |
|
input_image, |
|
visualization_score_threshold, |
|
], |
|
outputs=[ |
|
detection_results, |
|
detection_visualization, |
|
]) |
|
redraw_button.click(fn=model.visualize_detection_results, |
|
inputs=[ |
|
input_image, |
|
detection_results, |
|
visualization_score_threshold, |
|
], |
|
outputs=[detection_visualization]) |
|
demo.queue(max_size=10).launch() |
|
|