NRC-Florida commited on
Commit
b60f993
·
1 Parent(s): c2011c5

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +80 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.llms import OpenAI
2
+ from langchain.chains.qa_with_sources import load_qa_with_sources_chain
3
+ from langchain.docstore.document import Document
4
+ import requests
5
+ import pathlib
6
+ import subprocess
7
+ import tempfile
8
+ import os
9
+ import gradio as gr
10
+ import pickle
11
+
12
+ # using a vector space for our search
13
+ from langchain.embeddings.openai import OpenAIEmbeddings
14
+ from langchain.vectorstores.faiss import FAISS
15
+ from langchain.text_splitter import CharacterTextSplitter
16
+
17
+ #loading FAISS search index from disk
18
+ with open("search_index.pickle", "rb") as f:
19
+ search_index = pickle.load(f)
20
+
21
+ #Get GPT3 response using Langchain
22
+ def print_answer(question, openai): #openai_embeddings
23
+ #search_index = get_search_index()
24
+ chain = load_qa_with_sources_chain(openai) #(OpenAI(temperature=0))
25
+ response = (
26
+ chain(
27
+ {
28
+ "input_documents": search_index.similarity_search(question, k=4),
29
+ "question": question,
30
+ },
31
+ return_only_outputs=True,
32
+ )["output_text"]
33
+ )
34
+ if len(response.split('\n')[-1].split())>2:
35
+ response = response.split('\n')[0] + ', '.join([' <a href="' + response.split('\n')[-1].split()[i] + '" target="_blank"><u>Click Link' + str(i) + '</u></a>' for i in range(1,len(response.split('\n')[-1].split()))])
36
+ else:
37
+ response = response.split('\n')[0] + ' <a href="' + response.split('\n')[-1].split()[-1] + '" target="_blank"><u>Click Link</u></a>'
38
+ return response
39
+
40
+
41
+ def chat(message, history, openai_api_key):
42
+ #openai_embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
43
+ openai = OpenAI(temperature=0, openai_api_key=openai_api_key )
44
+ #os.environ["OPENAI_API_KEY"] = openai_api_key
45
+ history = history or []
46
+ message = message.lower()
47
+ response = print_answer(message, openai) #openai_embeddings
48
+ history.append((message, response))
49
+ return history, history
50
+
51
+
52
+ with gr.Blocks() as demo:
53
+ gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
54
+ <div
55
+ style="
56
+ display: inline-flex;
57
+ align-items: center;
58
+ gap: 0.8rem;
59
+ font-size: 1.75rem;
60
+ "
61
+ >
62
+ <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
63
+ chat-langchain QandA - LangChain Bot
64
+ </h1>
65
+ </div>
66
+ <p style="margin-bottom: 10px; font-size: 94%">
67
+ Hi, I'm a Q and A chat-langchain expert bot, start by typing in your OpenAI API key, questions/issues you are facing in your chat-langchain implementations and then press enter.<br>
68
+ <a href="https://huggingface.co/spaces/ysharma/InstructPix2Pix_Chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate Space with GPU Upgrade for fast Inference & no queue<br>
69
+ Built using <a href="https://langchain.readthedocs.io/en/latest/" target="_blank">LangChain</a> and <a href="https://github.com/gradio-app/gradio" target="_blank">Gradio</a> for the chat-langchain Repo
70
+ </p>
71
+ </div>""")
72
+ with gr.Row():
73
+ question = gr.Textbox(label = 'Type in your questions about chat-langchain here and press Enter!', placeholder = 'What questions do you want to ask about the chat-langchain library?')
74
+ openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
75
+ state = gr.State()
76
+ chatbot = gr.Chatbot()
77
+ question.submit(chat, [question, state, openai_api_key], [chatbot, state])
78
+
79
+ if __name__ == "__main__":
80
+ demo.launch()