xmrt commited on
Commit
b8bd0d3
1 Parent(s): 184fd64

BRD owlvit

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -19,11 +19,9 @@ model.eval()
19
  processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
20
 
21
 
22
- def query_image(img_url, text_queries, score_threshold):
23
  text_queries = text_queries.split(",")
24
 
25
- response = requests.get(img_url)
26
- img = Image.open(BytesIO(response.content))
27
  img = np.array(img)
28
 
29
  target_sizes = torch.Tensor([img.shape[:2]])
@@ -56,9 +54,6 @@ def query_image(img_url, text_queries, score_threshold):
56
 
57
 
58
  description = """
59
- Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlvit">OWL-ViT</a>,
60
- introduced in <a href="https://arxiv.org/abs/2205.06230">Simple Open-Vocabulary Object Detection
61
- with Vision Transformers</a>.
62
  \n\nYou can use OWL-ViT to query images with text descriptions of any object.
63
  To use it, simply input the URL of an image and enter comma separated text descriptions of objects you want to query the image for. You
64
  can also use the score threshold slider to set a threshold to filter out low probability predictions.
@@ -70,7 +65,9 @@ hence you can get better predictions by querying the image with text templates u
70
  """
71
  demo = gr.Interface(
72
  query_image,
73
- inputs=["text", "text", gr.Slider(0, 1, value=0.1)],
 
 
74
  outputs="image",
75
  title="Zero-Shot Object Detection with OWL-ViT",
76
  description=description,
 
19
  processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
20
 
21
 
22
+ def query_image(img, text_queries, score_threshold):
23
  text_queries = text_queries.split(",")
24
 
 
 
25
  img = np.array(img)
26
 
27
  target_sizes = torch.Tensor([img.shape[:2]])
 
54
 
55
 
56
  description = """
 
 
 
57
  \n\nYou can use OWL-ViT to query images with text descriptions of any object.
58
  To use it, simply input the URL of an image and enter comma separated text descriptions of objects you want to query the image for. You
59
  can also use the score threshold slider to set a threshold to filter out low probability predictions.
 
65
  """
66
  demo = gr.Interface(
67
  query_image,
68
+ inputs=[gr.Image(source="upload"),
69
+ "text",
70
+ gr.Slider(0, 1, value=0.1)],
71
  outputs="image",
72
  title="Zero-Shot Object Detection with OWL-ViT",
73
  description=description,