3d pers looking weird
Browse files
main.py
CHANGED
@@ -120,6 +120,7 @@ def pose3d(video):
|
|
120 |
thickness=4,
|
121 |
radius = 5,
|
122 |
return_vis=True,
|
|
|
123 |
rebase_keypoint_height=True,
|
124 |
device=device)
|
125 |
|
@@ -223,17 +224,6 @@ def run_UI():
|
|
223 |
webcam_output4 = gr.Video(height=512, label = "Detection and tracking", show_label=True, format="mp4")
|
224 |
|
225 |
with gr.Tab("General information"):
|
226 |
-
gr.Markdown("You can load the keypoints in python in the following way: ")
|
227 |
-
gr.Code(
|
228 |
-
value="""def hello_world():
|
229 |
-
return "Hello, world!"
|
230 |
-
|
231 |
-
print(hello_world())""",
|
232 |
-
language="python",
|
233 |
-
interactive=True,
|
234 |
-
show_label=False,
|
235 |
-
)
|
236 |
-
|
237 |
gr.Markdown("""
|
238 |
\n # Information about the models
|
239 |
|
@@ -254,7 +244,18 @@ def run_UI():
|
|
254 |
\n The tracking method in the Ultralight's YOLOv8 model is used for object tracking in videos. It takes a video file or a camera stream as input and returns the tracked objects in each frame. The method uses the COCO dataset classes for object detection and tracking.
|
255 |
|
256 |
\n The COCO dataset contains 80 classes of objects such as person, car, bicycle, etc. See https://docs.ultralytics.com/datasets/detect/coco/ for all available classes. The tracking method uses the COCO classes to detect and track the objects in the video frames. The tracked objects are represented as bounding boxes with labels indicating the class of the object.""")
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
# From file
|
259 |
submit_pose_file.click(fn=pose2d,
|
260 |
inputs= [video_input, file_kpthr],
|
|
|
120 |
thickness=4,
|
121 |
radius = 5,
|
122 |
return_vis=True,
|
123 |
+
kpt_thr=0.3,
|
124 |
rebase_keypoint_height=True,
|
125 |
device=device)
|
126 |
|
|
|
224 |
webcam_output4 = gr.Video(height=512, label = "Detection and tracking", show_label=True, format="mp4")
|
225 |
|
226 |
with gr.Tab("General information"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
gr.Markdown("""
|
228 |
\n # Information about the models
|
229 |
|
|
|
244 |
\n The tracking method in the Ultralight's YOLOv8 model is used for object tracking in videos. It takes a video file or a camera stream as input and returns the tracked objects in each frame. The method uses the COCO dataset classes for object detection and tracking.
|
245 |
|
246 |
\n The COCO dataset contains 80 classes of objects such as person, car, bicycle, etc. See https://docs.ultralytics.com/datasets/detect/coco/ for all available classes. The tracking method uses the COCO classes to detect and track the objects in the video frames. The tracked objects are represented as bounding boxes with labels indicating the class of the object.""")
|
247 |
+
gr.Markdown("You can load the keypoints in python in the following way: ")
|
248 |
+
gr.Code(
|
249 |
+
value="""def hello_world():
|
250 |
+
return "Hello, world!"
|
251 |
+
|
252 |
+
print(hello_world())""",
|
253 |
+
language="python",
|
254 |
+
interactive=True,
|
255 |
+
show_label=False,
|
256 |
+
)
|
257 |
+
|
258 |
+
|
259 |
# From file
|
260 |
submit_pose_file.click(fn=pose2d,
|
261 |
inputs= [video_input, file_kpthr],
|