cuda
Browse files- Dockerfile +2 -1
- main.py +6 -9
Dockerfile
CHANGED
@@ -4,7 +4,8 @@ WORKDIR /code
|
|
4 |
COPY ./requirements.txt /code/requirements.txt
|
5 |
|
6 |
#RUN pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.ht
|
7 |
-
RUN pip install torch==1.9.1 torchvision==0.10.1 -f https://download.pytorch.org/whl/
|
|
|
8 |
RUN pip install --no-cache-dir --upgrade -U openmim
|
9 |
RUN mim install --no-cache-dir --upgrade mmengine
|
10 |
RUN mim install "mmcv>=2.0.1"
|
|
|
4 |
COPY ./requirements.txt /code/requirements.txt
|
5 |
|
6 |
#RUN pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.ht
|
7 |
+
RUN pip install torch==1.9.1 torchvision==0.10.1 -f https://download.pytorch.org/whl/cu113
|
8 |
+
#https://download.pytorch.org/whl/torch_stable.ht
|
9 |
RUN pip install --no-cache-dir --upgrade -U openmim
|
10 |
RUN mim install --no-cache-dir --upgrade mmengine
|
11 |
RUN mim install "mmcv>=2.0.1"
|
main.py
CHANGED
@@ -29,6 +29,8 @@ human3d = MMPoseInferencer(pose3d="human3d")
|
|
29 |
track_model = YOLO('yolov8n.pt') # Load an official Detect model
|
30 |
|
31 |
# ultraltics
|
|
|
|
|
32 |
|
33 |
print("[INFO]: Downloaded models!")
|
34 |
|
@@ -38,7 +40,6 @@ def check_extension(video):
|
|
38 |
# extract the file name and extension
|
39 |
file_name = split_tup[0]
|
40 |
file_extension = split_tup[1]
|
41 |
-
print(file_extension)
|
42 |
|
43 |
if file_extension != ".mp4":
|
44 |
print("Converting to mp4")
|
@@ -50,9 +51,6 @@ def check_extension(video):
|
|
50 |
return video
|
51 |
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
def tracking(video, model, boxes=True):
|
57 |
print("[INFO] Is cuda available? ", torch.cuda.is_available())
|
58 |
print("[INFO] Loading model...")
|
@@ -61,12 +59,11 @@ def tracking(video, model, boxes=True):
|
|
61 |
# Perform tracking with the model
|
62 |
print("[INFO] Starting tracking!")
|
63 |
# https://docs.ultralytics.com/modes/predict/
|
64 |
-
annotated_frame = model(video, boxes=boxes)
|
65 |
|
66 |
return annotated_frame
|
67 |
|
68 |
def show_tracking(video_content):
|
69 |
-
print()
|
70 |
|
71 |
# https://docs.ultralytics.com/datasets/detect/coco/
|
72 |
video = cv2.VideoCapture(video_content)
|
@@ -116,7 +113,7 @@ def pose3d(video):
|
|
116 |
thickness=2,
|
117 |
return_vis=True,
|
118 |
rebase_keypoint_height=True,
|
119 |
-
device=
|
120 |
|
121 |
result = [result for result in result_generator] #next(result_generator)
|
122 |
|
@@ -139,7 +136,7 @@ def pose2d(video, kpt_threshold):
|
|
139 |
thickness=2,
|
140 |
rebase_keypoint_height=True,
|
141 |
kpt_thr=kpt_threshold,
|
142 |
-
device=
|
143 |
)
|
144 |
|
145 |
result = [result for result in result_generator] #next(result_generator)
|
@@ -163,7 +160,7 @@ def pose2dhand(video, kpt_threshold):
|
|
163 |
thickness=2,
|
164 |
rebase_keypoint_height=True,
|
165 |
kpt_thr=kpt_threshold,
|
166 |
-
device=
|
167 |
|
168 |
result = [result for result in result_generator] #next(result_generator)
|
169 |
|
|
|
29 |
track_model = YOLO('yolov8n.pt') # Load an official Detect model
|
30 |
|
31 |
# ultraltics
|
32 |
+
if torch.cuda.is_available():
|
33 |
+
device = "cuda"
|
34 |
|
35 |
print("[INFO]: Downloaded models!")
|
36 |
|
|
|
40 |
# extract the file name and extension
|
41 |
file_name = split_tup[0]
|
42 |
file_extension = split_tup[1]
|
|
|
43 |
|
44 |
if file_extension != ".mp4":
|
45 |
print("Converting to mp4")
|
|
|
51 |
return video
|
52 |
|
53 |
|
|
|
|
|
|
|
54 |
def tracking(video, model, boxes=True):
|
55 |
print("[INFO] Is cuda available? ", torch.cuda.is_available())
|
56 |
print("[INFO] Loading model...")
|
|
|
59 |
# Perform tracking with the model
|
60 |
print("[INFO] Starting tracking!")
|
61 |
# https://docs.ultralytics.com/modes/predict/
|
62 |
+
annotated_frame = model(video, boxes=boxes, device=device)
|
63 |
|
64 |
return annotated_frame
|
65 |
|
66 |
def show_tracking(video_content):
|
|
|
67 |
|
68 |
# https://docs.ultralytics.com/datasets/detect/coco/
|
69 |
video = cv2.VideoCapture(video_content)
|
|
|
113 |
thickness=2,
|
114 |
return_vis=True,
|
115 |
rebase_keypoint_height=True,
|
116 |
+
device=device)
|
117 |
|
118 |
result = [result for result in result_generator] #next(result_generator)
|
119 |
|
|
|
136 |
thickness=2,
|
137 |
rebase_keypoint_height=True,
|
138 |
kpt_thr=kpt_threshold,
|
139 |
+
device=device
|
140 |
)
|
141 |
|
142 |
result = [result for result in result_generator] #next(result_generator)
|
|
|
160 |
thickness=2,
|
161 |
rebase_keypoint_height=True,
|
162 |
kpt_thr=kpt_threshold,
|
163 |
+
device=device)
|
164 |
|
165 |
result = [result for result in result_generator] #next(result_generator)
|
166 |
|