import mmpose | |
print(mmpose.__version__) | |
from mmpose.apis import MMPoseInferencer | |
inferencer = MMPoseInferencer('human') | |
print("[INFO]: Imported modules!!") | |
import gradio as gr | |
def greet(photo): | |
print("[INFO]: Downloaded models!") | |
result_generator = inferencer(photo) | |
print("[INFO]: Visualizing results!") | |
vis, pred = next(result_generator) | |
return vis | |
# # specify detection model by alias | |
# # the available aliases include 'human', 'hand', 'face', 'animal', | |
# # as well as any additional aliases defined in mmdet | |
# inferencer = MMPoseInferencer( | |
# # suppose the pose estimator is trained on custom dataset | |
# pose2d='custom_human_pose_estimator.py', | |
# pose2d_weights='custom_human_pose_estimator.pth', | |
# det_model='human' | |
# ) | |
if __name__ == '__main__': | |
demo = gr.Interface(fn=greet, inputs=gr.Image(source="webcam"), outputs=gr.Image()) | |
demo.launch() |