USR-DA / compare.py
DS
dump shiet
e5b70eb
raw
history blame
1.41 kB
import glob
import os
import time
from collections import OrderedDict
import numpy as np
import cv2
import matplotlib.pyplot as plt
from natsort import natsort
from tqdm import tqdm
def fiFindByWildcard(wildcard):
return natsort.natsorted(glob.glob(wildcard, recursive=True))
if __name__ == "__main__":
out_data_path = fiFindByWildcard("./results_crop (1)/out/*")
gt_data_path = fiFindByWildcard("./results_crop (1)/target/*")
source_data_path = fiFindByWildcard("./results_crop (1)/source/*")
for src_path, out_path, gt_path in tqdm(list(zip(source_data_path, out_data_path, gt_data_path))):
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
ax1.set_title("Bicubic")
ax2.set_title("Baseline")
ax3.set_title("Ground truth")
src = cv2.imread(src_path)[:, :, [2, 1, 0]]
out = cv2.imread(out_path)[:, :, [2, 1, 0]]
gt = cv2.imread(gt_path)[:, :, [2, 1, 0]]
src = cv2.resize(src, None, fx=4, fy=4, interpolation=cv2.INTER_CUBIC)
ax1.set_yticklabels([])
ax1.set_xticklabels([])
ax2.set_yticklabels([])
ax2.set_xticklabels([])
ax3.set_yticklabels([])
ax3.set_xticklabels([])
ax1.imshow(src)
ax2.imshow(out)
ax3.imshow(gt)
fig.savefig(f"./result_compare_crop_new/{os.path.basename(gt_path)}", bbox_inches='tight' , dpi=1200)
plt.close()