|
import glob |
|
import os |
|
import time |
|
from collections import OrderedDict |
|
import numpy as np |
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
from natsort import natsort |
|
from tqdm import tqdm |
|
|
|
|
|
def fiFindByWildcard(wildcard): |
|
return natsort.natsorted(glob.glob(wildcard, recursive=True)) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
out_data_path = fiFindByWildcard("./results_crop (1)/out/*") |
|
gt_data_path = fiFindByWildcard("./results_crop (1)/target/*") |
|
source_data_path = fiFindByWildcard("./results_crop (1)/source/*") |
|
|
|
for src_path, out_path, gt_path in tqdm(list(zip(source_data_path, out_data_path, gt_data_path))): |
|
fig, (ax1, ax2, ax3) = plt.subplots(1, 3) |
|
ax1.set_title("Bicubic") |
|
ax2.set_title("Baseline") |
|
ax3.set_title("Ground truth") |
|
|
|
src = cv2.imread(src_path)[:, :, [2, 1, 0]] |
|
out = cv2.imread(out_path)[:, :, [2, 1, 0]] |
|
gt = cv2.imread(gt_path)[:, :, [2, 1, 0]] |
|
src = cv2.resize(src, None, fx=4, fy=4, interpolation=cv2.INTER_CUBIC) |
|
ax1.set_yticklabels([]) |
|
ax1.set_xticklabels([]) |
|
ax2.set_yticklabels([]) |
|
ax2.set_xticklabels([]) |
|
ax3.set_yticklabels([]) |
|
ax3.set_xticklabels([]) |
|
ax1.imshow(src) |
|
ax2.imshow(out) |
|
ax3.imshow(gt) |
|
fig.savefig(f"./result_compare_crop_new/{os.path.basename(gt_path)}", bbox_inches='tight' , dpi=1200) |
|
plt.close() |
|
|
|
|
|
|
|
|
|
|