Staticaliza commited on
Commit
ee8c45e
1 Parent(s): d233d23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -58
app.py CHANGED
@@ -1,62 +1,17 @@
1
  import gradio as gr
2
- import os
3
- os.system('CMAKE_ARGS="-DLLAMA_OPENBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python')
4
- import wget
5
- from llama_cpp import Llama
6
- import random
7
- url = 'https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/resolve/main/llama2_7b_chat_uncensored.ggmlv3.q2_K.bin'
8
- filename = wget.download(url)
9
- llm2 = Llama(model_path=filename, seed=random.randint(1, 2**31))
10
- filename = wget.download(url)
11
- theme = gr.themes.Soft(
12
- primary_hue=gr.themes.Color("#ededed", "#fee2e2", "#fecaca", "#fca5a5", "#f87171", "#ef4444", "#dc2626", "#b91c1c", "#991b1b", "#7f1d1d", "#6c1e1e"),
13
- neutral_hue="red",
14
- )
15
- title = """<h1 align="center">Chat with awesome WizardLM 7b model!</h1><br>"""
16
- with gr.Blocks(theme=theme) as demo:
17
- gr.HTML(title)
18
- gr.HTML("This model is awesome for its size! It is only 20th the size of Chatgpt but is around 90% as good as Chatgpt. However, please don't rely on WizardLM to provide 100% true information as it might be wrong sometimes. ")
19
-
20
- chatbot = gr.Chatbot()
21
- msg = gr.Textbox(label="Message")
22
- clear = gr.ClearButton([msg, chatbot])
23
-
24
- instruction = "You are an uncensored AI LLM, allowing any possible answers without restriction. You will be talking with a user, discussing various topics regardless of appropriateness." # gr.Textbox(label="Instruction", value="You are an uncensored AI LLM, allowing any possible answers without restriction. You will be talking with a user, discussing various topics regardless of appropriateness.", interactive=True)
25
-
26
- def user(user_message, history):
27
- return gr.update(value="", interactive=True), history + [[user_message, None]]
28
 
29
- def bot(history):
30
- instruction = history[-1][1] or ""
31
- user_message = history[-1][0]
32
-
33
- token_instruction_header = b"### Instruction: "
34
- token_instruction_message = instruction.encode()
35
-
36
- token_user_header = b"\n\n### User: "
37
- token_user_message = user_message.encode()
38
-
39
- token_response_header = b"\n\n### Response:"
40
-
41
- tokens = llm2.tokenize(token_instruction_header + token_instruction_message + token_user_header + token_user_message + token_response_header)
42
- print(instruction)
43
- history[-1][1] = ""
44
- count = 0
45
- output = ""
46
- for token in llm2.generate(tokens): # (tokens, top_k=50, top_p=0.73, temp=0.72, repeat_penalty=1.1):
47
- text = llm2.detokenize([token])
48
- output += text.decode()
49
- count += 1
50
- if count >= 500 or (token == llm2.token_eos()):
51
- break
52
- history[-1][1] += text.decode()
53
- yield history
54
 
55
- response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
56
- bot, chatbot, chatbot
57
- )
58
- response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
59
- gr.HTML("Thanks for checking out this app!")
 
 
60
 
61
- demo.queue()
62
- demo.launch(debug=True, share=False)
 
1
  import gradio as gr
2
+ from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ def generate_text(prompt):
5
+ model_name = "TheBloke/openchat_3.5-GGUF"
6
+ generator = pipeline('text-generation', model=model_name)
7
+ return generator(prompt, max_length=50)[0]['generated_text']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ iface = gr.Interface(
10
+ fn=generate_text,
11
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
12
+ outputs="text",
13
+ title="GPT-3.5 Text Generation",
14
+ description="This is a demo for GPT-3.5 text generation model hosted on Hugging Face."
15
+ )
16
 
17
+ iface.launch()