AI-Demo / app.py
Staticaliza
Update app.py
c932dfe
raw
history blame
2.26 kB
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download
model_path = "models"
model_name = "openchat_3.5.Q4_K_M.gguf"
hf_hub_download(repo_id="TheBloke/openchat_3.5-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
model.config["promptTemplate"] = "[INST] {0} [/INST]"
model.config["systemPrompt"] = ""
model._is_chat_session_activated = False
max_new_tokens = 2048
def generater(message, history, temperature, top_p, top_k):
prompt = "<s>"
for user_message, assistant_message in history:
prompt += model.config["promptTemplate"].format(user_message)
prompt += assistant_message + "</s>"
prompt += model.config["promptTemplate"].format(message)
outputs = []
for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
outputs.append(token)
yield "".join(outputs)
chatbot = gr.Chatbot()
additional_inputs=[
gr.Slider(
label="temperature",
value=0.5,
minimum=0.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.",
),
gr.Slider(
label="top_p",
value=1.0,
minimum=0.0,
maximum=1.0,
step=0.01,
interactive=True,
info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it",
),
gr.Slider(
label="top_k",
value=40,
minimum=0,
maximum=1000,
step=1,
interactive=True,
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.",
)
]
iface = gr.ChatInterface(
fn = generater,
title="AI Demo",
chatbot=chatbot,
additional_inputs=additional_inputs,
)
with gr.Blocks() as demo:
iface.render()
if __name__ == "__main__":
demo.queue(max_size=3).launch()