Spaces:
Sleeping
Sleeping
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Library of components of export_tfhub.py. See docstring there for more.""" | |
import contextlib | |
import hashlib | |
import os | |
import tempfile | |
from typing import Optional, Text, Tuple | |
# Import libraries | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
# pylint: disable=g-direct-tensorflow-import TODO(b/175369555): Remove these. | |
from tensorflow.core.protobuf import saved_model_pb2 | |
from tensorflow.python.ops import control_flow_assert | |
# pylint: enable=g-direct-tensorflow-import | |
from official.legacy.bert import configs | |
from official.modeling import tf_utils | |
from official.nlp.configs import encoders | |
from official.nlp.modeling import layers | |
from official.nlp.modeling import models | |
from official.nlp.modeling import networks | |
def get_bert_encoder(bert_config): | |
"""Returns a BertEncoder with dict outputs.""" | |
bert_encoder = networks.BertEncoder( | |
vocab_size=bert_config.vocab_size, | |
hidden_size=bert_config.hidden_size, | |
num_layers=bert_config.num_hidden_layers, | |
num_attention_heads=bert_config.num_attention_heads, | |
intermediate_size=bert_config.intermediate_size, | |
activation=tf_utils.get_activation(bert_config.hidden_act), | |
dropout_rate=bert_config.hidden_dropout_prob, | |
attention_dropout_rate=bert_config.attention_probs_dropout_prob, | |
max_sequence_length=bert_config.max_position_embeddings, | |
type_vocab_size=bert_config.type_vocab_size, | |
initializer=tf_keras.initializers.TruncatedNormal( | |
stddev=bert_config.initializer_range), | |
embedding_width=bert_config.embedding_size, | |
dict_outputs=True) | |
return bert_encoder | |
def get_do_lower_case(do_lower_case, vocab_file=None, sp_model_file=None): | |
"""Returns do_lower_case, replacing None by a guess from vocab file name.""" | |
if do_lower_case is not None: | |
return do_lower_case | |
elif vocab_file: | |
do_lower_case = "uncased" in vocab_file | |
logging.info("Using do_lower_case=%s based on name of vocab_file=%s", | |
do_lower_case, vocab_file) | |
return do_lower_case | |
elif sp_model_file: | |
do_lower_case = True # All public ALBERTs (as of Oct 2020) do it. | |
logging.info("Defaulting to do_lower_case=%s for Sentencepiece tokenizer", | |
do_lower_case) | |
return do_lower_case | |
else: | |
raise ValueError("Must set vocab_file or sp_model_file.") | |
def _create_model( | |
*, | |
bert_config: Optional[configs.BertConfig] = None, | |
encoder_config: Optional[encoders.EncoderConfig] = None, | |
with_mlm: bool, | |
) -> Tuple[tf_keras.Model, tf_keras.Model]: | |
"""Creates the model to export and the model to restore the checkpoint. | |
Args: | |
bert_config: A legacy `BertConfig` to create a `BertEncoder` object. Exactly | |
one of encoder_config and bert_config must be set. | |
encoder_config: An `EncoderConfig` to create an encoder of the configured | |
type (`BertEncoder` or other). | |
with_mlm: A bool to control the second component of the result. If True, | |
will create a `BertPretrainerV2` object; otherwise, will create a | |
`BertEncoder` object. | |
Returns: | |
A Tuple of (1) a Keras model that will be exported, (2) a `BertPretrainerV2` | |
object or `BertEncoder` object depending on the value of `with_mlm` | |
argument, which contains the first model and will be used for restoring | |
weights from the checkpoint. | |
""" | |
if (bert_config is not None) == (encoder_config is not None): | |
raise ValueError("Exactly one of `bert_config` and `encoder_config` " | |
"can be specified, but got %s and %s" % | |
(bert_config, encoder_config)) | |
if bert_config is not None: | |
encoder = get_bert_encoder(bert_config) | |
else: | |
encoder = encoders.build_encoder(encoder_config) | |
# Convert from list of named inputs to dict of inputs keyed by name. | |
# Only the latter accepts a dict of inputs after restoring from SavedModel. | |
if isinstance(encoder.inputs, list) or isinstance(encoder.inputs, tuple): | |
encoder_inputs_dict = {x.name: x for x in encoder.inputs} | |
else: | |
# encoder.inputs by default is dict for BertEncoderV2. | |
encoder_inputs_dict = encoder.inputs | |
encoder_output_dict = encoder(encoder_inputs_dict) | |
# For interchangeability with other text representations, | |
# add "default" as an alias for BERT's whole-input reptesentations. | |
encoder_output_dict["default"] = encoder_output_dict["pooled_output"] | |
core_model = tf_keras.Model( | |
inputs=encoder_inputs_dict, outputs=encoder_output_dict) | |
if with_mlm: | |
if bert_config is not None: | |
hidden_act = bert_config.hidden_act | |
else: | |
assert encoder_config is not None | |
hidden_act = encoder_config.get().hidden_activation | |
pretrainer = models.BertPretrainerV2( | |
encoder_network=encoder, | |
mlm_activation=tf_utils.get_activation(hidden_act)) | |
if isinstance(pretrainer.inputs, dict): | |
pretrainer_inputs_dict = pretrainer.inputs | |
else: | |
pretrainer_inputs_dict = {x.name: x for x in pretrainer.inputs} | |
pretrainer_output_dict = pretrainer(pretrainer_inputs_dict) | |
mlm_model = tf_keras.Model( | |
inputs=pretrainer_inputs_dict, outputs=pretrainer_output_dict) | |
# Set `_auto_track_sub_layers` to False, so that the additional weights | |
# from `mlm` sub-object will not be included in the core model. | |
# TODO(b/169210253): Use a public API when available. | |
core_model._auto_track_sub_layers = False # pylint: disable=protected-access | |
core_model.mlm = mlm_model | |
return core_model, pretrainer | |
else: | |
return core_model, encoder | |
def export_model(export_path: Text, | |
*, | |
bert_config: Optional[configs.BertConfig] = None, | |
encoder_config: Optional[encoders.EncoderConfig] = None, | |
model_checkpoint_path: Text, | |
with_mlm: bool, | |
copy_pooler_dense_to_encoder: bool = False, | |
vocab_file: Optional[Text] = None, | |
sp_model_file: Optional[Text] = None, | |
do_lower_case: Optional[bool] = None) -> None: | |
"""Exports an Encoder as SavedModel after restoring pre-trained weights. | |
The exported SavedModel implements a superset of the Encoder API for | |
Text embeddings with Transformer Encoders described at | |
https://www.tensorflow.org/hub/common_saved_model_apis/text. | |
In particular, the exported SavedModel can be used in the following way: | |
``` | |
# Calls default interface (encoder only). | |
encoder = hub.load(...) | |
encoder_inputs = dict( | |
input_word_ids=..., # Shape [batch, seq_length], dtype=int32 | |
input_mask=..., # Shape [batch, seq_length], dtype=int32 | |
input_type_ids=..., # Shape [batch, seq_length], dtype=int32 | |
) | |
encoder_outputs = encoder(encoder_inputs) | |
assert encoder_outputs.keys() == { | |
"pooled_output", # Shape [batch_size, width], dtype=float32 | |
"default", # Alias for "pooled_output" (aligns with other models). | |
"sequence_output" # Shape [batch_size, seq_length, width], dtype=float32 | |
"encoder_outputs", # List of Tensors with outputs of all transformer layers. | |
} | |
``` | |
If `with_mlm` is True, the exported SavedModel can also be called in the | |
following way: | |
``` | |
# Calls expanded interface that includes logits of the Masked Language Model. | |
mlm_inputs = dict( | |
input_word_ids=..., # Shape [batch, seq_length], dtype=int32 | |
input_mask=..., # Shape [batch, seq_length], dtype=int32 | |
input_type_ids=..., # Shape [batch, seq_length], dtype=int32 | |
masked_lm_positions=..., # Shape [batch, num_predictions], dtype=int32 | |
) | |
mlm_outputs = encoder.mlm(mlm_inputs) | |
assert mlm_outputs.keys() == { | |
"pooled_output", # Shape [batch, width], dtype=float32 | |
"sequence_output", # Shape [batch, seq_length, width], dtype=float32 | |
"encoder_outputs", # List of Tensors with outputs of all transformer layers. | |
"mlm_logits" # Shape [batch, num_predictions, vocab_size], dtype=float32 | |
} | |
``` | |
Args: | |
export_path: The SavedModel output directory. | |
bert_config: An optional `configs.BertConfig` object. Note: exactly one of | |
`bert_config` and following `encoder_config` must be specified. | |
encoder_config: An optional `encoders.EncoderConfig` object. | |
model_checkpoint_path: The path to the checkpoint. | |
with_mlm: Whether to export the additional mlm sub-object. | |
copy_pooler_dense_to_encoder: Whether to copy the pooler's dense layer used | |
in the next sentence prediction task to the encoder. | |
vocab_file: The path to the wordpiece vocab file, or None. | |
sp_model_file: The path to the sentencepiece model file, or None. Exactly | |
one of vocab_file and sp_model_file must be set. | |
do_lower_case: Whether to lower-case text before tokenization. | |
""" | |
if with_mlm: | |
core_model, pretrainer = _create_model( | |
bert_config=bert_config, | |
encoder_config=encoder_config, | |
with_mlm=with_mlm) | |
encoder = pretrainer.encoder_network | |
# It supports both the new pretrainer checkpoint produced by TF-NLP and | |
# the checkpoint converted from TF1 (original BERT, SmallBERTs). | |
checkpoint_items = pretrainer.checkpoint_items | |
checkpoint = tf.train.Checkpoint(**checkpoint_items) | |
else: | |
core_model, encoder = _create_model( | |
bert_config=bert_config, | |
encoder_config=encoder_config, | |
with_mlm=with_mlm) | |
checkpoint = tf.train.Checkpoint( | |
model=encoder, # Legacy checkpoints. | |
encoder=encoder) | |
checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched() | |
if copy_pooler_dense_to_encoder: | |
logging.info("Copy pooler's dense layer to the encoder.") | |
pooler_checkpoint = tf.train.Checkpoint( | |
**{"next_sentence.pooler_dense": encoder.pooler_layer}) | |
pooler_checkpoint.restore( | |
model_checkpoint_path).assert_existing_objects_matched() | |
# Before SavedModels for preprocessing appeared in Oct 2020, the encoders | |
# provided this information to let users do preprocessing themselves. | |
# We keep doing that for now. It helps users to upgrade incrementally. | |
# Moreover, it offers an escape hatch for advanced users who want the | |
# full vocab, not the high-level operations from the preprocessing model. | |
if vocab_file: | |
core_model.vocab_file = tf.saved_model.Asset(vocab_file) | |
if do_lower_case is None: | |
raise ValueError("Must pass do_lower_case if passing vocab_file.") | |
core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False) | |
elif sp_model_file: | |
# This was used by ALBERT, with implied values of do_lower_case=True | |
# and strip_diacritics=True. | |
core_model.sp_model_file = tf.saved_model.Asset(sp_model_file) | |
else: | |
raise ValueError("Must set vocab_file or sp_model_file") | |
core_model.save(export_path, include_optimizer=False, save_format="tf") | |
class BertPackInputsSavedModelWrapper(tf.train.Checkpoint): | |
"""Wraps a BertPackInputs layer for export to SavedModel. | |
The wrapper object is suitable for use with `tf.saved_model.save()` and | |
`.load()`. The wrapper object is callable with inputs and outputs like the | |
BertPackInputs layer, but differs from saving an unwrapped Keras object: | |
- The inputs can be a list of 1 or 2 RaggedTensors of dtype int32 and | |
ragged rank 1 or 2. (In Keras, saving to a tf.function in a SavedModel | |
would fix the number of RaggedTensors and their ragged rank.) | |
- The call accepts an optional keyword argument `seq_length=` to override | |
the layer's .seq_length hyperparameter. (In Keras, a hyperparameter | |
could not be changed after saving to a tf.function in a SavedModel.) | |
""" | |
def __init__(self, bert_pack_inputs: layers.BertPackInputs): | |
super().__init__() | |
# Preserve the layer's configured seq_length as a default but make it | |
# overridable. Having this dynamically determined default argument | |
# requires self.__call__ to be defined in this indirect way. | |
default_seq_length = bert_pack_inputs.seq_length | |
def call(inputs, seq_length=default_seq_length): | |
return layers.BertPackInputs.bert_pack_inputs( | |
inputs, | |
seq_length=seq_length, | |
start_of_sequence_id=bert_pack_inputs.start_of_sequence_id, | |
end_of_segment_id=bert_pack_inputs.end_of_segment_id, | |
padding_id=bert_pack_inputs.padding_id) | |
self.__call__ = call | |
for ragged_rank in range(1, 3): | |
for num_segments in range(1, 3): | |
_ = self.__call__.get_concrete_function([ | |
tf.RaggedTensorSpec([None] * (ragged_rank + 1), dtype=tf.int32) | |
for _ in range(num_segments) | |
], | |
seq_length=tf.TensorSpec( | |
[], tf.int32)) | |
def create_preprocessing(*, | |
vocab_file: Optional[str] = None, | |
sp_model_file: Optional[str] = None, | |
do_lower_case: bool, | |
tokenize_with_offsets: bool, | |
default_seq_length: int) -> tf_keras.Model: | |
"""Returns a preprocessing Model for given tokenization parameters. | |
This function builds a Keras Model with attached subobjects suitable for | |
saving to a SavedModel. The resulting SavedModel implements the Preprocessor | |
API for Text embeddings with Transformer Encoders described at | |
https://www.tensorflow.org/hub/common_saved_model_apis/text. | |
Args: | |
vocab_file: The path to the wordpiece vocab file, or None. | |
sp_model_file: The path to the sentencepiece model file, or None. Exactly | |
one of vocab_file and sp_model_file must be set. This determines the type | |
of tokenzer that is used. | |
do_lower_case: Whether to do lower case. | |
tokenize_with_offsets: Whether to include the .tokenize_with_offsets | |
subobject. | |
default_seq_length: The sequence length of preprocessing results from root | |
callable. This is also the default sequence length for the | |
bert_pack_inputs subobject. | |
Returns: | |
A tf_keras.Model object with several attached subobjects, suitable for | |
saving as a preprocessing SavedModel. | |
""" | |
# Select tokenizer. | |
if bool(vocab_file) == bool(sp_model_file): | |
raise ValueError("Must set exactly one of vocab_file, sp_model_file") | |
if vocab_file: | |
tokenize = layers.BertTokenizer( | |
vocab_file=vocab_file, | |
lower_case=do_lower_case, | |
tokenize_with_offsets=tokenize_with_offsets) | |
else: | |
tokenize = layers.SentencepieceTokenizer( | |
model_file_path=sp_model_file, | |
lower_case=do_lower_case, | |
strip_diacritics=True, # Strip diacritics to follow ALBERT model. | |
tokenize_with_offsets=tokenize_with_offsets) | |
# The root object of the preprocessing model can be called to do | |
# one-shot preprocessing for users with single-sentence inputs. | |
sentences = tf_keras.layers.Input(shape=(), dtype=tf.string, name="sentences") | |
if tokenize_with_offsets: | |
tokens, start_offsets, limit_offsets = tokenize(sentences) | |
else: | |
tokens = tokenize(sentences) | |
pack = layers.BertPackInputs( | |
seq_length=default_seq_length, | |
special_tokens_dict=tokenize.get_special_tokens_dict()) | |
model_inputs = pack(tokens) | |
preprocessing = tf_keras.Model(sentences, model_inputs) | |
# Individual steps of preprocessing are made available as named subobjects | |
# to enable more general preprocessing. For saving, they need to be Models | |
# in their own right. | |
preprocessing.tokenize = tf_keras.Model(sentences, tokens) | |
# Provide an equivalent to tokenize.get_special_tokens_dict(). | |
preprocessing.tokenize.get_special_tokens_dict = tf.train.Checkpoint() | |
preprocessing.tokenize.get_special_tokens_dict.__call__ = tf.function( | |
lambda: tokenize.get_special_tokens_dict(), # pylint: disable=[unnecessary-lambda] | |
input_signature=[]) | |
if tokenize_with_offsets: | |
preprocessing.tokenize_with_offsets = tf_keras.Model( | |
sentences, [tokens, start_offsets, limit_offsets]) | |
preprocessing.tokenize_with_offsets.get_special_tokens_dict = ( | |
preprocessing.tokenize.get_special_tokens_dict) | |
# Conceptually, this should be | |
# preprocessing.bert_pack_inputs = tf_keras.Model(tokens, model_inputs) | |
# but technicalities require us to use a wrapper (see comments there). | |
# In particular, seq_length can be overridden when calling this. | |
preprocessing.bert_pack_inputs = BertPackInputsSavedModelWrapper(pack) | |
return preprocessing | |
def _move_to_tmpdir(file_path: Optional[Text], tmpdir: Text) -> Optional[Text]: | |
"""Returns new path with same basename and hash of original path.""" | |
if file_path is None: | |
return None | |
olddir, filename = os.path.split(file_path) | |
hasher = hashlib.sha1() | |
hasher.update(olddir.encode("utf-8")) | |
target_dir = os.path.join(tmpdir, hasher.hexdigest()) | |
target_file = os.path.join(target_dir, filename) | |
tf.io.gfile.mkdir(target_dir) | |
tf.io.gfile.copy(file_path, target_file) | |
return target_file | |
def export_preprocessing(export_path: Text, | |
*, | |
vocab_file: Optional[Text] = None, | |
sp_model_file: Optional[Text] = None, | |
do_lower_case: bool, | |
tokenize_with_offsets: bool, | |
default_seq_length: int, | |
experimental_disable_assert: bool = False) -> None: | |
"""Exports preprocessing to a SavedModel for TF Hub.""" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# TODO(b/175369555): Remove experimental_disable_assert and its use. | |
with _maybe_disable_assert(experimental_disable_assert): | |
preprocessing = create_preprocessing( | |
vocab_file=_move_to_tmpdir(vocab_file, tmpdir), | |
sp_model_file=_move_to_tmpdir(sp_model_file, tmpdir), | |
do_lower_case=do_lower_case, | |
tokenize_with_offsets=tokenize_with_offsets, | |
default_seq_length=default_seq_length) | |
preprocessing.save(export_path, include_optimizer=False, save_format="tf") | |
if experimental_disable_assert: | |
_check_no_assert(export_path) | |
# It helps the unit test to prevent stray copies of the vocab file. | |
if tf.io.gfile.exists(tmpdir): | |
raise IOError("Failed to clean up TemporaryDirectory") | |
# TODO(b/175369555): Remove all workarounds for this bug of TensorFlow 2.4 | |
# when this bug is no longer a concern for publishing new models. | |
# TensorFlow 2.4 has a placement issue with Assert ops in tf.functions called | |
# from Dataset.map() on a TPU worker. They end up on the TPU coordinator, | |
# and invoking them from the TPU worker is either inefficient (when possible) | |
# or impossible (notably when using "headless" TPU workers on Cloud that do not | |
# have a channel to the coordinator). The bug has been fixed in time for TF 2.5. | |
# To work around this, the following code avoids Assert ops in the exported | |
# SavedModels. It monkey-patches calls to tf.Assert from inside TensorFlow and | |
# replaces them by a no-op while building the exported model. This is fragile, | |
# so _check_no_assert() validates the result. The resulting model should be fine | |
# to read on future versions of TF, even if this workaround at export time | |
# may break eventually. (Failing unit tests will tell.) | |
def _dont_assert(condition, data, summarize=None, name="Assert"): | |
"""The no-op version of tf.Assert installed by _maybe_disable_assert.""" | |
del condition, data, summarize # Unused. | |
if tf.executing_eagerly(): | |
return | |
with tf.name_scope(name): | |
return tf.no_op(name="dont_assert") | |
def _maybe_disable_assert(disable_assert): | |
"""Scoped monkey patch of control_flow_assert.Assert to a no-op.""" | |
if not disable_assert: | |
yield | |
return | |
original_assert = control_flow_assert.Assert | |
control_flow_assert.Assert = _dont_assert | |
yield | |
control_flow_assert.Assert = original_assert | |
def _check_no_assert(saved_model_path): | |
"""Raises AssertionError if SavedModel contains Assert ops.""" | |
saved_model_filename = os.path.join(saved_model_path, "saved_model.pb") | |
with tf.io.gfile.GFile(saved_model_filename, "rb") as f: | |
saved_model = saved_model_pb2.SavedModel.FromString(f.read()) | |
assert_nodes = [] | |
graph_def = saved_model.meta_graphs[0].graph_def | |
assert_nodes += [ | |
"node '{}' in global graph".format(n.name) | |
for n in graph_def.node | |
if n.op == "Assert" | |
] | |
for fdef in graph_def.library.function: | |
assert_nodes += [ | |
"node '{}' in function '{}'".format(n.name, fdef.signature.name) | |
for n in fdef.node_def | |
if n.op == "Assert" | |
] | |
if assert_nodes: | |
raise AssertionError( | |
"Internal tool error: " | |
"failed to suppress {} Assert ops in SavedModel:\n{}".format( | |
len(assert_nodes), "\n".join(assert_nodes[:10]))) | |