Spaces:
Sleeping
Sleeping
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.data.dual_encoder_dataloader.""" | |
import os | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.nlp.data import dual_encoder_dataloader | |
_LEFT_FEATURE_NAME = 'left_input' | |
_RIGHT_FEATURE_NAME = 'right_input' | |
def _create_fake_dataset(output_path): | |
"""Creates a fake dataset contains examples for training a dual encoder model. | |
The created dataset contains examples with two byteslist features keyed by | |
_LEFT_FEATURE_NAME and _RIGHT_FEATURE_NAME. | |
Args: | |
output_path: The output path of the fake dataset. | |
""" | |
def create_str_feature(values): | |
return tf.train.Feature(bytes_list=tf.train.BytesList(value=values)) | |
with tf.io.TFRecordWriter(output_path) as writer: | |
for _ in range(100): | |
features = {} | |
features[_LEFT_FEATURE_NAME] = create_str_feature([b'hello world.']) | |
features[_RIGHT_FEATURE_NAME] = create_str_feature([b'world hello.']) | |
tf_example = tf.train.Example( | |
features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
def _make_vocab_file(vocab, output_path): | |
with tf.io.gfile.GFile(output_path, 'w') as f: | |
f.write('\n'.join(vocab + [''])) | |
class DualEncoderDataTest(tf.test.TestCase, parameterized.TestCase): | |
def test_load_dataset(self): | |
seq_length = 16 | |
batch_size = 10 | |
train_data_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
vocab_path = os.path.join(self.get_temp_dir(), 'vocab.txt') | |
_create_fake_dataset(train_data_path) | |
_make_vocab_file( | |
['[PAD]', '[UNK]', '[CLS]', '[SEP]', 'he', '#llo', 'world'], vocab_path) | |
data_config = dual_encoder_dataloader.DualEncoderDataConfig( | |
input_path=train_data_path, | |
seq_length=seq_length, | |
vocab_file=vocab_path, | |
lower_case=True, | |
left_text_fields=(_LEFT_FEATURE_NAME,), | |
right_text_fields=(_RIGHT_FEATURE_NAME,), | |
global_batch_size=batch_size) | |
dataset = dual_encoder_dataloader.DualEncoderDataLoader( | |
data_config).load() | |
features = next(iter(dataset)) | |
self.assertCountEqual( | |
['left_word_ids', 'left_mask', 'left_type_ids', 'right_word_ids', | |
'right_mask', 'right_type_ids'], | |
features.keys()) | |
self.assertEqual(features['left_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['left_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['left_type_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['right_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['right_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['right_type_ids'].shape, (batch_size, seq_length)) | |
def test_load_tfds(self, use_preprocessing_hub): | |
seq_length = 16 | |
batch_size = 10 | |
if use_preprocessing_hub: | |
vocab_path = '' | |
preprocessing_hub = ( | |
'https://tfhub.dev/tensorflow/bert_multi_cased_preprocess/3') | |
else: | |
vocab_path = os.path.join(self.get_temp_dir(), 'vocab.txt') | |
_make_vocab_file( | |
['[PAD]', '[UNK]', '[CLS]', '[SEP]', 'he', '#llo', 'world'], | |
vocab_path) | |
preprocessing_hub = '' | |
data_config = dual_encoder_dataloader.DualEncoderDataConfig( | |
tfds_name='para_crawl/enmt', | |
tfds_split='train', | |
seq_length=seq_length, | |
vocab_file=vocab_path, | |
lower_case=True, | |
left_text_fields=('en',), | |
right_text_fields=('mt',), | |
preprocessing_hub_module_url=preprocessing_hub, | |
global_batch_size=batch_size) | |
dataset = dual_encoder_dataloader.DualEncoderDataLoader( | |
data_config).load() | |
features = next(iter(dataset)) | |
self.assertCountEqual( | |
['left_word_ids', 'left_mask', 'left_type_ids', 'right_word_ids', | |
'right_mask', 'right_type_ids'], | |
features.keys()) | |
self.assertEqual(features['left_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['left_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['left_type_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['right_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['right_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['right_type_ids'].shape, (batch_size, seq_length)) | |
if __name__ == '__main__': | |
tf.test.main() | |