Spaces:
Sleeping
Sleeping
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""BERT library to process data for classification task.""" | |
import collections | |
import csv | |
import importlib | |
import json | |
import os | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
import tensorflow_datasets as tfds | |
from official.nlp.tools import tokenization | |
class InputExample(object): | |
"""A single training/test example for simple seq regression/classification.""" | |
def __init__(self, | |
guid, | |
text_a, | |
text_b=None, | |
label=None, | |
weight=None, | |
example_id=None): | |
"""Constructs a InputExample. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string for classification, float for regression. The | |
label of the example. This should be specified for train and dev | |
examples, but not for test examples. | |
weight: (Optional) float. The weight of the example to be used during | |
training. | |
example_id: (Optional) int. The int identification number of example in | |
the corpus. | |
""" | |
self.guid = guid | |
self.text_a = text_a | |
self.text_b = text_b | |
self.label = label | |
self.weight = weight | |
self.example_id = example_id | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, | |
input_ids, | |
input_mask, | |
segment_ids, | |
label_id, | |
is_real_example=True, | |
weight=None, | |
example_id=None): | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
self.label_id = label_id | |
self.is_real_example = is_real_example | |
self.weight = weight | |
self.example_id = example_id | |
class DataProcessor(object): | |
"""Base class for converters for seq regression/classification datasets.""" | |
def __init__(self, process_text_fn=tokenization.convert_to_unicode): | |
self.process_text_fn = process_text_fn | |
self.is_regression = False | |
self.label_type = None | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the dev set.""" | |
raise NotImplementedError() | |
def get_test_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for prediction.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
def get_processor_name(): | |
"""Gets the string identifier of the processor.""" | |
raise NotImplementedError() | |
def _read_tsv(cls, input_file, quotechar=None): | |
"""Reads a tab separated value file.""" | |
with tf.io.gfile.GFile(input_file, "r") as f: | |
reader = csv.reader(f, delimiter="\t", quotechar=quotechar) | |
lines = [] | |
for line in reader: | |
lines.append(line) | |
return lines | |
def _read_jsonl(cls, input_file): | |
"""Reads a json line file.""" | |
with tf.io.gfile.GFile(input_file, "r") as f: | |
lines = [] | |
for json_str in f: | |
lines.append(json.loads(json_str)) | |
return lines | |
def featurize_example(self, *kargs, **kwargs): | |
"""Converts a single `InputExample` into a single `InputFeatures`.""" | |
return convert_single_example(*kargs, **kwargs) | |
class DefaultGLUEDataProcessor(DataProcessor): | |
"""Processor for the SuperGLUE dataset.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples_tfds("train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples_tfds("validation") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples_tfds("test") | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
raise NotImplementedError() | |
class AxProcessor(DataProcessor): | |
"""Processor for the AX dataset (GLUE diagnostics dataset).""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
train_mnli_dataset = tfds.load( | |
"glue/mnli", split="train", try_gcs=True).as_numpy_iterator() | |
return self._create_examples_tfds(train_mnli_dataset, "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
val_mnli_dataset = tfds.load( | |
"glue/mnli", split="validation_matched", | |
try_gcs=True).as_numpy_iterator() | |
return self._create_examples_tfds(val_mnli_dataset, "validation") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
test_ax_dataset = tfds.load( | |
"glue/ax", split="test", try_gcs=True).as_numpy_iterator() | |
return self._create_examples_tfds(test_ax_dataset, "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["contradiction", "entailment", "neutral"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "AX" | |
def _create_examples_tfds(self, dataset, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "contradiction" | |
text_a = self.process_text_fn(example["hypothesis"]) | |
text_b = self.process_text_fn(example["premise"]) | |
if set_type != "test": | |
label = self.get_labels()[example["label"]] | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
class ColaProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the CoLA data set (GLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "COLA" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/cola", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "0" | |
text_a = self.process_text_fn(example["sentence"]) | |
if set_type != "test": | |
label = str(example["label"]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=None, label=label, weight=None)) | |
return examples | |
class ImdbProcessor(DataProcessor): | |
"""Processor for the IMDb dataset.""" | |
def get_labels(self): | |
return ["neg", "pos"] | |
def get_train_examples(self, data_dir): | |
return self._create_examples(os.path.join(data_dir, "train")) | |
def get_dev_examples(self, data_dir): | |
return self._create_examples(os.path.join(data_dir, "test")) | |
def get_processor_name(): | |
"""See base class.""" | |
return "IMDB" | |
def _create_examples(self, data_dir): | |
"""Creates examples.""" | |
examples = [] | |
for label in ["neg", "pos"]: | |
cur_dir = os.path.join(data_dir, label) | |
for filename in tf.io.gfile.listdir(cur_dir): | |
if not filename.endswith("txt"): | |
continue | |
if len(examples) % 1000 == 0: | |
logging.info("Loading dev example %d", len(examples)) | |
path = os.path.join(cur_dir, filename) | |
with tf.io.gfile.GFile(path, "r") as f: | |
text = f.read().strip().replace("<br />", " ") | |
examples.append( | |
InputExample( | |
guid="unused_id", text_a=text, text_b=None, label=label)) | |
return examples | |
class MnliProcessor(DataProcessor): | |
"""Processor for the MultiNLI data set (GLUE version).""" | |
def __init__(self, | |
mnli_type="matched", | |
process_text_fn=tokenization.convert_to_unicode): | |
super(MnliProcessor, self).__init__(process_text_fn) | |
self.dataset = tfds.load("glue/mnli", try_gcs=True) | |
if mnli_type not in ("matched", "mismatched"): | |
raise ValueError("Invalid `mnli_type`: %s" % mnli_type) | |
self.mnli_type = mnli_type | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples_tfds("train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
if self.mnli_type == "matched": | |
return self._create_examples_tfds("validation_matched") | |
else: | |
return self._create_examples_tfds("validation_mismatched") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
if self.mnli_type == "matched": | |
return self._create_examples_tfds("test_matched") | |
else: | |
return self._create_examples_tfds("test_mismatched") | |
def get_labels(self): | |
"""See base class.""" | |
return ["contradiction", "entailment", "neutral"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "MNLI" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/mnli", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "contradiction" | |
text_a = self.process_text_fn(example["hypothesis"]) | |
text_b = self.process_text_fn(example["premise"]) | |
if set_type != "test": | |
label = self.get_labels()[example["label"]] | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
class MrpcProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the MRPC data set (GLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "MRPC" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/mrpc", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "0" | |
text_a = self.process_text_fn(example["sentence1"]) | |
text_b = self.process_text_fn(example["sentence2"]) | |
if set_type != "test": | |
label = str(example["label"]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
class PawsxProcessor(DataProcessor): | |
"""Processor for the PAWS-X data set.""" | |
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"] | |
def __init__(self, | |
language="en", | |
process_text_fn=tokenization.convert_to_unicode): | |
super(PawsxProcessor, self).__init__(process_text_fn) | |
if language == "all": | |
self.languages = PawsxProcessor.supported_languages | |
elif language not in PawsxProcessor.supported_languages: | |
raise ValueError("language %s is not supported for PAWS-X task." % | |
language) | |
else: | |
self.languages = [language] | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
lines = [] | |
for language in self.languages: | |
if language == "en": | |
train_tsv = "train.tsv" | |
else: | |
train_tsv = "translated_train.tsv" | |
# Skips the header. | |
lines.extend( | |
self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:]) | |
examples = [] | |
for i, line in enumerate(lines): | |
guid = "train-%d" % i | |
text_a = self.process_text_fn(line[1]) | |
text_b = self.process_text_fn(line[2]) | |
label = self.process_text_fn(line[3]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
lines = [] | |
for lang in PawsxProcessor.supported_languages: | |
lines.extend( | |
self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:]) | |
examples = [] | |
for i, line in enumerate(lines): | |
guid = "dev-%d" % i | |
text_a = self.process_text_fn(line[1]) | |
text_b = self.process_text_fn(line[2]) | |
label = self.process_text_fn(line[3]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
examples_by_lang = {k: [] for k in self.supported_languages} | |
for lang in self.supported_languages: | |
lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:] | |
for i, line in enumerate(lines): | |
guid = "test-%d" % i | |
text_a = self.process_text_fn(line[1]) | |
text_b = self.process_text_fn(line[2]) | |
label = self.process_text_fn(line[3]) | |
examples_by_lang[lang].append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples_by_lang | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "XTREME-PAWS-X" | |
class QnliProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the QNLI data set (GLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["entailment", "not_entailment"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "QNLI" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/qnli", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "entailment" | |
text_a = self.process_text_fn(example["question"]) | |
text_b = self.process_text_fn(example["sentence"]) | |
if set_type != "test": | |
label = self.get_labels()[example["label"]] | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
class QqpProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the QQP data set (GLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "QQP" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/qqp", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "0" | |
text_a = self.process_text_fn(example["question1"]) | |
text_b = self.process_text_fn(example["question2"]) | |
if set_type != "test": | |
label = str(example["label"]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
class RteProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the RTE data set (GLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
# All datasets are converted to 2-class split, where for 3-class datasets we | |
# collapse neutral and contradiction into not_entailment. | |
return ["entailment", "not_entailment"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "RTE" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/rte", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "entailment" | |
text_a = self.process_text_fn(example["sentence1"]) | |
text_b = self.process_text_fn(example["sentence2"]) | |
if set_type != "test": | |
label = self.get_labels()[example["label"]] | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
class SstProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the SST-2 data set (GLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "SST-2" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/sst2", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "0" | |
text_a = self.process_text_fn(example["sentence"]) | |
if set_type != "test": | |
label = str(example["label"]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=None, label=label, weight=None)) | |
return examples | |
class StsBProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the STS-B data set (GLUE version).""" | |
def __init__(self, process_text_fn=tokenization.convert_to_unicode): | |
super(StsBProcessor, self).__init__(process_text_fn=process_text_fn) | |
self.is_regression = True | |
self.label_type = float | |
self._labels = None | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/stsb", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = 0.0 | |
text_a = self.process_text_fn(example["sentence1"]) | |
text_b = self.process_text_fn(example["sentence2"]) | |
if set_type != "test": | |
label = self.label_type(example["label"]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
def get_labels(self): | |
"""See base class.""" | |
return self._labels | |
def get_processor_name(): | |
"""See base class.""" | |
return "STS-B" | |
class TfdsProcessor(DataProcessor): | |
"""Processor for generic text classification and regression TFDS data set. | |
The TFDS parameters are expected to be provided in the tfds_params string, in | |
a comma-separated list of parameter assignments. | |
Examples: | |
tfds_params="dataset=scicite,text_key=string" | |
tfds_params="dataset=imdb_reviews,test_split=,dev_split=test" | |
tfds_params="dataset=glue/cola,text_key=sentence" | |
tfds_params="dataset=glue/sst2,text_key=sentence" | |
tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence" | |
tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2" | |
tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2," | |
"is_regression=true,label_type=float" | |
tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis," | |
"skip_label=-1" | |
Possible parameters (please refer to the documentation of Tensorflow Datasets | |
(TFDS) for the meaning of individual parameters): | |
dataset: Required dataset name (potentially with subset and version number). | |
data_dir: Optional TFDS source root directory. | |
module_import: Optional Dataset module to import. | |
train_split: Name of the train split (defaults to `train`). | |
dev_split: Name of the dev split (defaults to `validation`). | |
test_split: Name of the test split (defaults to `test`). | |
text_key: Key of the text_a feature (defaults to `text`). | |
text_b_key: Key of the second text feature if available. | |
label_key: Key of the label feature (defaults to `label`). | |
test_text_key: Key of the text feature to use in test set. | |
test_text_b_key: Key of the second text feature to use in test set. | |
test_label: String to be used as the label for all test examples. | |
label_type: Type of the label key (defaults to `int`). | |
weight_key: Key of the float sample weight (is not used if not provided). | |
is_regression: Whether the task is a regression problem (defaults to False). | |
skip_label: Skip examples with given label (defaults to None). | |
""" | |
def __init__(self, | |
tfds_params, | |
process_text_fn=tokenization.convert_to_unicode): | |
super(TfdsProcessor, self).__init__(process_text_fn) | |
self._process_tfds_params_str(tfds_params) | |
if self.module_import: | |
importlib.import_module(self.module_import) | |
self.dataset, info = tfds.load( | |
self.dataset_name, data_dir=self.data_dir, with_info=True) | |
if self.is_regression: | |
self._labels = None | |
else: | |
self._labels = list(range(info.features[self.label_key].num_classes)) | |
def _process_tfds_params_str(self, params_str): | |
"""Extracts TFDS parameters from a comma-separated assignments string.""" | |
dtype_map = {"int": int, "float": float} | |
cast_str_to_bool = lambda s: s.lower() not in ["false", "0"] | |
tuples = [x.split("=") for x in params_str.split(",")] | |
d = {k.strip(): v.strip() for k, v in tuples} | |
self.dataset_name = d["dataset"] # Required. | |
self.data_dir = d.get("data_dir", None) | |
self.module_import = d.get("module_import", None) | |
self.train_split = d.get("train_split", "train") | |
self.dev_split = d.get("dev_split", "validation") | |
self.test_split = d.get("test_split", "test") | |
self.text_key = d.get("text_key", "text") | |
self.text_b_key = d.get("text_b_key", None) | |
self.label_key = d.get("label_key", "label") | |
self.test_text_key = d.get("test_text_key", self.text_key) | |
self.test_text_b_key = d.get("test_text_b_key", self.text_b_key) | |
self.test_label = d.get("test_label", "test_example") | |
self.label_type = dtype_map[d.get("label_type", "int")] | |
self.is_regression = cast_str_to_bool(d.get("is_regression", "False")) | |
self.weight_key = d.get("weight_key", None) | |
self.skip_label = d.get("skip_label", None) | |
if self.skip_label is not None: | |
self.skip_label = self.label_type(self.skip_label) | |
def get_train_examples(self, data_dir): | |
assert data_dir is None | |
return self._create_examples(self.train_split, "train") | |
def get_dev_examples(self, data_dir): | |
assert data_dir is None | |
return self._create_examples(self.dev_split, "dev") | |
def get_test_examples(self, data_dir): | |
assert data_dir is None | |
return self._create_examples(self.test_split, "test") | |
def get_labels(self): | |
return self._labels | |
def get_processor_name(self): | |
return "TFDS_" + self.dataset_name | |
def _create_examples(self, split_name, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
if split_name not in self.dataset: | |
raise ValueError("Split {} not available.".format(split_name)) | |
dataset = self.dataset[split_name].as_numpy_iterator() | |
examples = [] | |
text_b, weight = None, None | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
if set_type == "test": | |
text_a = self.process_text_fn(example[self.test_text_key]) | |
if self.test_text_b_key: | |
text_b = self.process_text_fn(example[self.test_text_b_key]) | |
label = self.test_label | |
else: | |
text_a = self.process_text_fn(example[self.text_key]) | |
if self.text_b_key: | |
text_b = self.process_text_fn(example[self.text_b_key]) | |
label = self.label_type(example[self.label_key]) | |
if self.skip_label is not None and label == self.skip_label: | |
continue | |
if self.weight_key: | |
weight = float(example[self.weight_key]) | |
examples.append( | |
InputExample( | |
guid=guid, | |
text_a=text_a, | |
text_b=text_b, | |
label=label, | |
weight=weight)) | |
return examples | |
class WnliProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the WNLI data set (GLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "WNLI" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"glue/wnli", split=set_type, try_gcs=True).as_numpy_iterator() | |
dataset = list(dataset) | |
dataset.sort(key=lambda x: x["idx"]) | |
examples = [] | |
for i, example in enumerate(dataset): | |
guid = "%s-%s" % (set_type, i) | |
label = "0" | |
text_a = self.process_text_fn(example["sentence1"]) | |
text_b = self.process_text_fn(example["sentence2"]) | |
if set_type != "test": | |
label = str(example["label"]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label, | |
weight=None)) | |
return examples | |
class XnliProcessor(DataProcessor): | |
"""Processor for the XNLI data set.""" | |
supported_languages = [ | |
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", | |
"ur", "vi", "zh" | |
] | |
def __init__(self, | |
language="en", | |
process_text_fn=tokenization.convert_to_unicode): | |
super(XnliProcessor, self).__init__(process_text_fn) | |
if language == "all": | |
self.languages = XnliProcessor.supported_languages | |
elif language not in XnliProcessor.supported_languages: | |
raise ValueError("language %s is not supported for XNLI task." % language) | |
else: | |
self.languages = [language] | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
lines = [] | |
for language in self.languages: | |
# Skips the header. | |
lines.extend( | |
self._read_tsv( | |
os.path.join(data_dir, "multinli", | |
"multinli.train.%s.tsv" % language))[1:]) | |
examples = [] | |
for i, line in enumerate(lines): | |
guid = "train-%d" % i | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = self.process_text_fn(line[2]) | |
if label == self.process_text_fn("contradictory"): | |
label = self.process_text_fn("contradiction") | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv")) | |
examples = [] | |
for i, line in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "dev-%d" % i | |
text_a = self.process_text_fn(line[6]) | |
text_b = self.process_text_fn(line[7]) | |
label = self.process_text_fn(line[1]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv")) | |
examples_by_lang = {k: [] for k in XnliProcessor.supported_languages} | |
for i, line in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "test-%d" % i | |
language = self.process_text_fn(line[0]) | |
text_a = self.process_text_fn(line[6]) | |
text_b = self.process_text_fn(line[7]) | |
label = self.process_text_fn(line[1]) | |
examples_by_lang[language].append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples_by_lang | |
def get_labels(self): | |
"""See base class.""" | |
return ["contradiction", "entailment", "neutral"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "XNLI" | |
class XtremePawsxProcessor(DataProcessor): | |
"""Processor for the XTREME PAWS-X data set.""" | |
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"] | |
def __init__(self, | |
process_text_fn=tokenization.convert_to_unicode, | |
translated_data_dir=None, | |
only_use_en_dev=True): | |
"""See base class. | |
Args: | |
process_text_fn: See base class. | |
translated_data_dir: If specified, will also include translated data in | |
the training and testing data. | |
only_use_en_dev: If True, only use english dev data. Otherwise, use dev | |
data from all languages. | |
""" | |
super(XtremePawsxProcessor, self).__init__(process_text_fn) | |
self.translated_data_dir = translated_data_dir | |
self.only_use_en_dev = only_use_en_dev | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
examples = [] | |
if self.translated_data_dir is None: | |
lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv")) | |
for i, line in enumerate(lines): | |
guid = "train-%d" % i | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = self.process_text_fn(line[2]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
else: | |
for lang in self.supported_languages: | |
lines = self._read_tsv( | |
os.path.join(self.translated_data_dir, "translate-train", | |
f"en-{lang}-translated.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"train-{lang}-{i}" | |
text_a = self.process_text_fn(line[2]) | |
text_b = self.process_text_fn(line[3]) | |
label = self.process_text_fn(line[4]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
examples = [] | |
if self.only_use_en_dev: | |
lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv")) | |
for i, line in enumerate(lines): | |
guid = "dev-%d" % i | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = self.process_text_fn(line[2]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
else: | |
for lang in self.supported_languages: | |
lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"dev-{lang}-{i}" | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = self.process_text_fn(line[2]) | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
examples_by_lang = {} | |
for lang in self.supported_languages: | |
examples_by_lang[lang] = [] | |
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"test-{lang}-{i}" | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = "0" | |
examples_by_lang[lang].append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
if self.translated_data_dir is not None: | |
for lang in self.supported_languages: | |
if lang == "en": | |
continue | |
examples_by_lang[f"{lang}-en"] = [] | |
lines = self._read_tsv( | |
os.path.join(self.translated_data_dir, "translate-test", | |
f"test-{lang}-en-translated.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"test-{lang}-en-{i}" | |
text_a = self.process_text_fn(line[2]) | |
text_b = self.process_text_fn(line[3]) | |
label = "0" | |
examples_by_lang[f"{lang}-en"].append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples_by_lang | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "XTREME-PAWS-X" | |
class XtremeXnliProcessor(DataProcessor): | |
"""Processor for the XTREME XNLI data set.""" | |
supported_languages = [ | |
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", | |
"ur", "vi", "zh" | |
] | |
def __init__(self, | |
process_text_fn=tokenization.convert_to_unicode, | |
translated_data_dir=None, | |
only_use_en_dev=True): | |
"""See base class. | |
Args: | |
process_text_fn: See base class. | |
translated_data_dir: If specified, will also include translated data in | |
the training data. | |
only_use_en_dev: If True, only use english dev data. Otherwise, use dev | |
data from all languages. | |
""" | |
super(XtremeXnliProcessor, self).__init__(process_text_fn) | |
self.translated_data_dir = translated_data_dir | |
self.only_use_en_dev = only_use_en_dev | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv")) | |
examples = [] | |
if self.translated_data_dir is None: | |
for i, line in enumerate(lines): | |
guid = "train-%d" % i | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = self.process_text_fn(line[2]) | |
if label == self.process_text_fn("contradictory"): | |
label = self.process_text_fn("contradiction") | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
else: | |
for lang in self.supported_languages: | |
lines = self._read_tsv( | |
os.path.join(self.translated_data_dir, "translate-train", | |
f"en-{lang}-translated.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"train-{lang}-{i}" | |
text_a = self.process_text_fn(line[2]) | |
text_b = self.process_text_fn(line[3]) | |
label = self.process_text_fn(line[4]) | |
if label == self.process_text_fn("contradictory"): | |
label = self.process_text_fn("contradiction") | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
examples = [] | |
if self.only_use_en_dev: | |
lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv")) | |
for i, line in enumerate(lines): | |
guid = "dev-%d" % i | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = self.process_text_fn(line[2]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
else: | |
for lang in self.supported_languages: | |
lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"dev-{lang}-{i}" | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = self.process_text_fn(line[2]) | |
if label == self.process_text_fn("contradictory"): | |
label = self.process_text_fn("contradiction") | |
examples.append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
examples_by_lang = {} | |
for lang in self.supported_languages: | |
examples_by_lang[lang] = [] | |
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"test-{lang}-{i}" | |
text_a = self.process_text_fn(line[0]) | |
text_b = self.process_text_fn(line[1]) | |
label = "contradiction" | |
examples_by_lang[lang].append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
if self.translated_data_dir is not None: | |
for lang in self.supported_languages: | |
if lang == "en": | |
continue | |
examples_by_lang[f"{lang}-en"] = [] | |
lines = self._read_tsv( | |
os.path.join(self.translated_data_dir, "translate-test", | |
f"test-{lang}-en-translated.tsv")) | |
for i, line in enumerate(lines): | |
guid = f"test-{lang}-en-{i}" | |
text_a = self.process_text_fn(line[2]) | |
text_b = self.process_text_fn(line[3]) | |
label = "contradiction" | |
examples_by_lang[f"{lang}-en"].append( | |
InputExample( | |
guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples_by_lang | |
def get_labels(self): | |
"""See base class.""" | |
return ["contradiction", "entailment", "neutral"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "XTREME-XNLI" | |
def convert_single_example(ex_index, example, label_list, max_seq_length, | |
tokenizer): | |
"""Converts a single `InputExample` into a single `InputFeatures`.""" | |
label_map = {} | |
if label_list: | |
for (i, label) in enumerate(label_list): | |
label_map[label] = i | |
tokens_a = tokenizer.tokenize(example.text_a) | |
tokens_b = None | |
if example.text_b: | |
tokens_b = tokenizer.tokenize(example.text_b) | |
if tokens_b: | |
# Modifies `tokens_a` and `tokens_b` in place so that the total | |
# length is less than the specified length. | |
# Account for [CLS], [SEP], [SEP] with "- 3" | |
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) | |
else: | |
# Account for [CLS] and [SEP] with "- 2" | |
if len(tokens_a) > max_seq_length - 2: | |
tokens_a = tokens_a[0:(max_seq_length - 2)] | |
seg_id_a = 0 | |
seg_id_b = 1 | |
seg_id_cls = 0 | |
seg_id_pad = 0 | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambiguously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens = [] | |
segment_ids = [] | |
tokens.append("[CLS]") | |
segment_ids.append(seg_id_cls) | |
for token in tokens_a: | |
tokens.append(token) | |
segment_ids.append(seg_id_a) | |
tokens.append("[SEP]") | |
segment_ids.append(seg_id_a) | |
if tokens_b: | |
for token in tokens_b: | |
tokens.append(token) | |
segment_ids.append(seg_id_b) | |
tokens.append("[SEP]") | |
segment_ids.append(seg_id_b) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
segment_ids.append(seg_id_pad) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
label_id = label_map[example.label] if label_map else example.label | |
if ex_index < 5: | |
logging.info("*** Example ***") | |
logging.info("guid: %s", (example.guid)) | |
logging.info("tokens: %s", | |
" ".join([tokenization.printable_text(x) for x in tokens])) | |
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) | |
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) | |
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) | |
logging.info("label: %s (id = %s)", example.label, str(label_id)) | |
logging.info("weight: %s", example.weight) | |
logging.info("example_id: %s", example.example_id) | |
feature = InputFeatures( | |
input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids, | |
label_id=label_id, | |
is_real_example=True, | |
weight=example.weight, | |
example_id=example.example_id) | |
return feature | |
class AXgProcessor(DataProcessor): | |
"""Processor for the AXg dataset (SuperGLUE diagnostics dataset).""" | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["entailment", "not_entailment"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "AXg" | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
examples = [] | |
for line in lines: | |
guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"]))) | |
text_a = self.process_text_fn(line["premise"]) | |
text_b = self.process_text_fn(line["hypothesis"]) | |
label = self.process_text_fn(line["label"]) | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class BoolQProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the BoolQ dataset (SuperGLUE diagnostics dataset).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["True", "False"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "BoolQ" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"super_glue/boolq", split=set_type, try_gcs=True).as_numpy_iterator() | |
examples = [] | |
for example in dataset: | |
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"]))) | |
text_a = self.process_text_fn(example["question"]) | |
text_b = self.process_text_fn(example["passage"]) | |
label = "False" | |
if set_type != "test": | |
label = self.get_labels()[example["label"]] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class CBProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the CB dataset (SuperGLUE diagnostics dataset).""" | |
def get_labels(self): | |
"""See base class.""" | |
return ["entailment", "neutral", "contradiction"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "CB" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
dataset = tfds.load( | |
"super_glue/cb", split=set_type, try_gcs=True).as_numpy_iterator() | |
examples = [] | |
for example in dataset: | |
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"]))) | |
text_a = self.process_text_fn(example["premise"]) | |
text_b = self.process_text_fn(example["hypothesis"]) | |
label = "entailment" | |
if set_type != "test": | |
label = self.get_labels()[example["label"]] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class SuperGLUERTEProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the RTE dataset (SuperGLUE version).""" | |
def get_labels(self): | |
"""See base class.""" | |
# All datasets are converted to 2-class split, where for 3-class datasets we | |
# collapse neutral and contradiction into not_entailment. | |
return ["entailment", "not_entailment"] | |
def get_processor_name(): | |
"""See base class.""" | |
return "RTESuperGLUE" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
examples = [] | |
dataset = tfds.load( | |
"super_glue/rte", split=set_type, try_gcs=True).as_numpy_iterator() | |
for example in dataset: | |
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"]))) | |
text_a = self.process_text_fn(example["premise"]) | |
text_b = self.process_text_fn(example["hypothesis"]) | |
label = "entailment" | |
if set_type != "test": | |
label = self.get_labels()[example["label"]] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class WiCInputExample(InputExample): | |
"""Processor for the WiC dataset (SuperGLUE version).""" | |
def __init__(self, | |
guid, | |
text_a, | |
text_b=None, | |
label=None, | |
word=None, | |
weight=None, | |
example_id=None): | |
"""A single training/test example for simple seq regression/classification.""" | |
super(WiCInputExample, self).__init__(guid, text_a, text_b, label, weight, | |
example_id) | |
self.word = word | |
class WiCProcessor(DefaultGLUEDataProcessor): | |
"""Processor for the RTE dataset (SuperGLUE version).""" | |
def get_labels(self): | |
"""Not used.""" | |
return [] | |
def get_processor_name(): | |
"""See base class.""" | |
return "RTESuperGLUE" | |
def _create_examples_tfds(self, set_type): | |
"""Creates examples for the training/dev/test sets.""" | |
examples = [] | |
dataset = tfds.load( | |
"super_glue/wic", split=set_type, try_gcs=True).as_numpy_iterator() | |
for example in dataset: | |
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"]))) | |
text_a = self.process_text_fn(example["sentence1"]) | |
text_b = self.process_text_fn(example["sentence2"]) | |
word = self.process_text_fn(example["word"]) | |
label = 0 | |
if set_type != "test": | |
label = example["label"] | |
examples.append( | |
WiCInputExample( | |
guid=guid, text_a=text_a, text_b=text_b, word=word, label=label)) | |
return examples | |
def featurize_example(self, ex_index, example, label_list, max_seq_length, | |
tokenizer): | |
"""Here we concate sentence1, sentence2, word together with [SEP] tokens.""" | |
del label_list | |
tokens_a = tokenizer.tokenize(example.text_a) | |
tokens_b = tokenizer.tokenize(example.text_b) | |
tokens_word = tokenizer.tokenize(example.word) | |
# Modifies `tokens_a` and `tokens_b` in place so that the total | |
# length is less than the specified length. | |
# Account for [CLS], [SEP], [SEP], [SEP] with "- 4" | |
# Here we only pop out the first two sentence tokens. | |
_truncate_seq_pair(tokens_a, tokens_b, | |
max_seq_length - 4 - len(tokens_word)) | |
seg_id_a = 0 | |
seg_id_b = 1 | |
seg_id_c = 2 | |
seg_id_cls = 0 | |
seg_id_pad = 0 | |
tokens = [] | |
segment_ids = [] | |
tokens.append("[CLS]") | |
segment_ids.append(seg_id_cls) | |
for token in tokens_a: | |
tokens.append(token) | |
segment_ids.append(seg_id_a) | |
tokens.append("[SEP]") | |
segment_ids.append(seg_id_a) | |
for token in tokens_b: | |
tokens.append(token) | |
segment_ids.append(seg_id_b) | |
tokens.append("[SEP]") | |
segment_ids.append(seg_id_b) | |
for token in tokens_word: | |
tokens.append(token) | |
segment_ids.append(seg_id_c) | |
tokens.append("[SEP]") | |
segment_ids.append(seg_id_c) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
segment_ids.append(seg_id_pad) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
label_id = example.label | |
if ex_index < 5: | |
logging.info("*** Example ***") | |
logging.info("guid: %s", (example.guid)) | |
logging.info("tokens: %s", | |
" ".join([tokenization.printable_text(x) for x in tokens])) | |
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) | |
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) | |
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) | |
logging.info("label: %s (id = %s)", example.label, str(label_id)) | |
logging.info("weight: %s", example.weight) | |
logging.info("example_id: %s", example.example_id) | |
feature = InputFeatures( | |
input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids, | |
label_id=label_id, | |
is_real_example=True, | |
weight=example.weight, | |
example_id=example.example_id) | |
return feature | |
def file_based_convert_examples_to_features(examples, | |
label_list, | |
max_seq_length, | |
tokenizer, | |
output_file, | |
label_type=None, | |
featurize_fn=None): | |
"""Convert a set of `InputExample`s to a TFRecord file.""" | |
tf.io.gfile.makedirs(os.path.dirname(output_file)) | |
writer = tf.io.TFRecordWriter(output_file) | |
for ex_index, example in enumerate(examples): | |
if ex_index % 10000 == 0: | |
logging.info("Writing example %d of %d", ex_index, len(examples)) | |
if featurize_fn: | |
feature = featurize_fn(ex_index, example, label_list, max_seq_length, | |
tokenizer) | |
else: | |
feature = convert_single_example(ex_index, example, label_list, | |
max_seq_length, tokenizer) | |
def create_int_feature(values): | |
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return f | |
def create_float_feature(values): | |
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return f | |
features = collections.OrderedDict() | |
features["input_ids"] = create_int_feature(feature.input_ids) | |
features["input_mask"] = create_int_feature(feature.input_mask) | |
features["segment_ids"] = create_int_feature(feature.segment_ids) | |
if label_type is not None and label_type == float: | |
features["label_ids"] = create_float_feature([feature.label_id]) | |
elif feature.label_id is not None: | |
features["label_ids"] = create_int_feature([feature.label_id]) | |
features["is_real_example"] = create_int_feature( | |
[int(feature.is_real_example)]) | |
if feature.weight is not None: | |
features["weight"] = create_float_feature([feature.weight]) | |
if feature.example_id is not None: | |
features["example_id"] = create_int_feature([feature.example_id]) | |
else: | |
features["example_id"] = create_int_feature([ex_index]) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
tokens_b.pop() | |
def generate_tf_record_from_data_file(processor, | |
data_dir, | |
tokenizer, | |
train_data_output_path=None, | |
eval_data_output_path=None, | |
test_data_output_path=None, | |
max_seq_length=128): | |
"""Generates and saves training data into a tf record file. | |
Args: | |
processor: Input processor object to be used for generating data. Subclass | |
of `DataProcessor`. | |
data_dir: Directory that contains train/eval/test data to process. | |
tokenizer: The tokenizer to be applied on the data. | |
train_data_output_path: Output to which processed tf record for training | |
will be saved. | |
eval_data_output_path: Output to which processed tf record for evaluation | |
will be saved. | |
test_data_output_path: Output to which processed tf record for testing | |
will be saved. Must be a pattern template with {} if processor has | |
language specific test data. | |
max_seq_length: Maximum sequence length of the to be generated | |
training/eval data. | |
Returns: | |
A dictionary containing input meta data. | |
""" | |
assert train_data_output_path or eval_data_output_path | |
label_list = processor.get_labels() | |
label_type = getattr(processor, "label_type", None) | |
is_regression = getattr(processor, "is_regression", False) | |
has_sample_weights = getattr(processor, "weight_key", False) | |
num_training_data = 0 | |
if train_data_output_path: | |
train_input_data_examples = processor.get_train_examples(data_dir) | |
file_based_convert_examples_to_features(train_input_data_examples, | |
label_list, max_seq_length, | |
tokenizer, train_data_output_path, | |
label_type, | |
processor.featurize_example) | |
num_training_data = len(train_input_data_examples) | |
if eval_data_output_path: | |
eval_input_data_examples = processor.get_dev_examples(data_dir) | |
file_based_convert_examples_to_features(eval_input_data_examples, | |
label_list, max_seq_length, | |
tokenizer, eval_data_output_path, | |
label_type, | |
processor.featurize_example) | |
meta_data = { | |
"processor_type": processor.get_processor_name(), | |
"train_data_size": num_training_data, | |
"max_seq_length": max_seq_length, | |
} | |
if test_data_output_path: | |
test_input_data_examples = processor.get_test_examples(data_dir) | |
if isinstance(test_input_data_examples, dict): | |
for language, examples in test_input_data_examples.items(): | |
file_based_convert_examples_to_features( | |
examples, label_list, max_seq_length, tokenizer, | |
test_data_output_path.format(language), label_type, | |
processor.featurize_example) | |
meta_data["test_{}_data_size".format(language)] = len(examples) | |
else: | |
file_based_convert_examples_to_features(test_input_data_examples, | |
label_list, max_seq_length, | |
tokenizer, test_data_output_path, | |
label_type, | |
processor.featurize_example) | |
meta_data["test_data_size"] = len(test_input_data_examples) | |
if is_regression: | |
meta_data["task_type"] = "bert_regression" | |
meta_data["label_type"] = {int: "int", float: "float"}[label_type] | |
else: | |
meta_data["task_type"] = "bert_classification" | |
meta_data["num_labels"] = len(processor.get_labels()) | |
if has_sample_weights: | |
meta_data["has_sample_weights"] = True | |
if eval_data_output_path: | |
meta_data["eval_data_size"] = len(eval_input_data_examples) | |
return meta_data | |