|
|
"""Model manager for generation model""" |
|
|
|
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class GenerateModelManager: |
|
|
"""Manages generation model loading and predictions""" |
|
|
|
|
|
def __init__(self): |
|
|
self.model = None |
|
|
self.tokenizer = None |
|
|
self.device = None |
|
|
self.model_loaded = False |
|
|
|
|
|
def load_model(self, model_id: str, api_key: str = None): |
|
|
"""Load model and tokenizer from Hugging Face""" |
|
|
if self.model_loaded: |
|
|
logger.info("Generation model already loaded") |
|
|
return |
|
|
|
|
|
try: |
|
|
logger.info(f"Loading generation model from Hugging Face: {model_id}") |
|
|
|
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
logger.info(f"Using device: {self.device}") |
|
|
|
|
|
|
|
|
token = api_key if api_key else None |
|
|
|
|
|
|
|
|
logger.info("Loading tokenizer...") |
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
|
model_id, |
|
|
token=token, |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
logger.info("Loading model...") |
|
|
self.model = AutoModelForSeq2SeqLM.from_pretrained( |
|
|
model_id, |
|
|
token=token, |
|
|
trust_remote_code=True |
|
|
) |
|
|
self.model.to(self.device) |
|
|
self.model.eval() |
|
|
|
|
|
self.model_loaded = True |
|
|
logger.info("✓ Generation model loaded successfully from Hugging Face!") |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error loading generation model: {str(e)}") |
|
|
raise RuntimeError(f"Failed to load generation model: {str(e)}") |
|
|
|
|
|
def generate(self, input_text: str, max_length: int = 128, num_beams: int = 4) -> str: |
|
|
"""Generate text from input""" |
|
|
if not self.model_loaded: |
|
|
raise RuntimeError("Generation model not loaded") |
|
|
|
|
|
|
|
|
inputs = self.tokenizer( |
|
|
input_text, |
|
|
return_tensors="pt", |
|
|
truncation=True, |
|
|
max_length=512, |
|
|
padding=True |
|
|
).to(self.device) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = self.model.generate( |
|
|
**inputs, |
|
|
max_length=max_length, |
|
|
num_beams=num_beams, |
|
|
early_stopping=True |
|
|
) |
|
|
|
|
|
|
|
|
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
return generated_text |
|
|
|
|
|
|
|
|
|
|
|
generate_model_manager = GenerateModelManager() |
|
|
|