Updated app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
from simpletransformers.seq2seq import Seq2SeqModel
|
3 |
|
4 |
# Define the models' paths
|
5 |
BM_MODEL_PATH = "Enutrof/marian-mt-en-pcm"
|
6 |
BBGM_MODEL_PATH = "NITHUB-AI/marian-mt-bbc-en-pcm"
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
#Load models
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
|
12 |
# Dictionary to easily select model
|
13 |
models = {
|
@@ -16,9 +37,11 @@ models = {
|
|
16 |
}
|
17 |
|
18 |
def translate(model_name, source_sentence, num_beams):
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
23 |
# Gradio interface
|
24 |
interface = gr.Interface(
|
@@ -33,7 +56,17 @@ interface = gr.Interface(
|
|
33 |
gr.Textbox(label="Prediction 2"),
|
34 |
gr.Textbox(label="Prediction 3"),
|
35 |
],
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
39 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from simpletransformers.seq2seq import Seq2SeqModel, Seq2SeqArgs
|
3 |
|
4 |
# Define the models' paths
|
5 |
BM_MODEL_PATH = "Enutrof/marian-mt-en-pcm"
|
6 |
BBGM_MODEL_PATH = "NITHUB-AI/marian-mt-bbc-en-pcm"
|
7 |
|
8 |
+
def load_translator(model_name='Enutrof/marian-mt-en-pcm'):
|
9 |
+
'''
|
10 |
+
This method loads the sequence to sequence model for translation.
|
11 |
+
:return: model
|
12 |
+
'''
|
13 |
+
pmodel_args = Seq2SeqArgs()
|
14 |
+
pmodel_args.max_length = 1024
|
15 |
+
pmodel_args.length_penalty = 1
|
16 |
+
pmodel_args.num_beams = 20
|
17 |
+
pmodel_args.num_return_sequences = 3
|
18 |
+
|
19 |
+
pmodel = Seq2SeqModel(
|
20 |
+
encoder_decoder_type="marian",
|
21 |
+
encoder_decoder_name=model_name,
|
22 |
+
args=pmodel_args,
|
23 |
+
use_cuda=False
|
24 |
+
)
|
25 |
+
return pmodel
|
26 |
+
|
27 |
#Load models
|
28 |
+
|
29 |
+
bm_model = load_translator(BM_MODEL_PATH)
|
30 |
+
bbgm_model = load_translator(BBGM_MODEL_PATH)
|
31 |
+
|
32 |
|
33 |
# Dictionary to easily select model
|
34 |
models = {
|
|
|
37 |
}
|
38 |
|
39 |
def translate(model_name, source_sentence, num_beams):
|
40 |
+
if isinstance(source_sentence, str):
|
41 |
+
source_sentence = [source_sentence]
|
42 |
+
model = models[model_name]
|
43 |
+
predictions = model.predict(input, num_beams=int(num_beams))
|
44 |
+
return [i.replace('β', ' ') for i in predictions[0]]
|
45 |
|
46 |
# Gradio interface
|
47 |
interface = gr.Interface(
|
|
|
56 |
gr.Textbox(label="Prediction 2"),
|
57 |
gr.Textbox(label="Prediction 3"),
|
58 |
],
|
59 |
+
title='English to π³π¬ Pidgin Automatic Translation',
|
60 |
+
description='Type your English text in the left text box to get π³π¬ Pidgin translations on the right. '
|
61 |
+
'Tell us the best translation by clicking one of the buttons below.',
|
62 |
+
examples=[
|
63 |
+
'Who are you?',
|
64 |
+
'Is a personal philosophy of moral relativism, the only way to survive in this ethically complex world, or is it just an excuse to justify doing bad things?',
|
65 |
+
'I know every song by that artiste.',
|
66 |
+
'They should not be permitted here.',
|
67 |
+
'What are you looking for?',
|
68 |
+
'I am lost, please help me find my way to the market.',
|
69 |
+
]
|
70 |
)
|
71 |
|
72 |
+
interface.launch(enable_queue=True)
|