Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,18 @@
|
|
|
|
|
| 1 |
import requests
|
| 2 |
import numpy as np
|
| 3 |
import faiss
|
| 4 |
from PyPDF2 import PdfReader
|
| 5 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from groq import Groq
|
| 7 |
import streamlit as st
|
| 8 |
-
import torch
|
| 9 |
-
import os
|
| 10 |
|
| 11 |
-
# Initialize Groq client
|
| 12 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 13 |
|
| 14 |
# Function to download and extract content from a public Google Drive PDF link
|
|
@@ -31,28 +35,8 @@ def extract_pdf_content(drive_url):
|
|
| 31 |
text += page.extract_text()
|
| 32 |
return text
|
| 33 |
|
| 34 |
-
# Function to chunk and tokenize text
|
| 35 |
-
def chunk_and_tokenize(text, tokenizer, chunk_size=512):
|
| 36 |
-
tokens = tokenizer.encode(text, add_special_tokens=False)
|
| 37 |
-
chunks = [tokens[i:i + chunk_size] for i in range(0, len(tokens), chunk_size)]
|
| 38 |
-
return chunks
|
| 39 |
-
|
| 40 |
-
# Function to compute embeddings and build FAISS index
|
| 41 |
-
def build_faiss_index(chunks, model):
|
| 42 |
-
embeddings = []
|
| 43 |
-
for chunk in chunks:
|
| 44 |
-
input_ids = torch.tensor([chunk])
|
| 45 |
-
with torch.no_grad():
|
| 46 |
-
embedding = model(input_ids).last_hidden_state.mean(dim=1).detach().numpy()
|
| 47 |
-
embeddings.append(embedding)
|
| 48 |
-
embeddings = np.vstack(embeddings)
|
| 49 |
-
|
| 50 |
-
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 51 |
-
index.add(embeddings)
|
| 52 |
-
return index
|
| 53 |
-
|
| 54 |
# Streamlit app
|
| 55 |
-
st.title("RAG
|
| 56 |
|
| 57 |
# Predefined Google Drive link
|
| 58 |
drive_url = "https://drive.google.com/file/d/1XvqA1OIssRs2gbmOtKFKj-02yQ5X2yg0/view?usp=sharing"
|
|
@@ -63,46 +47,40 @@ text = extract_pdf_content(drive_url)
|
|
| 63 |
if text:
|
| 64 |
st.write("Document extracted successfully!")
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
# Query input
|
| 77 |
query = st.text_input("Enter your query:")
|
| 78 |
if query:
|
| 79 |
-
st.write("Searching
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
model(torch.tensor([query_tokens]))
|
| 83 |
-
.last_hidden_state.mean(dim=1)
|
| 84 |
-
.detach().numpy()
|
| 85 |
-
)
|
| 86 |
-
_, indices = index.search(query_embedding, k=1)
|
| 87 |
-
|
| 88 |
-
# Retrieve the most relevant chunk
|
| 89 |
-
relevant_chunk = chunks[indices[0][0]]
|
| 90 |
-
relevant_text = tokenizer.decode(relevant_chunk)
|
| 91 |
-
st.write("Relevant chunk found:", relevant_text)
|
| 92 |
-
|
| 93 |
-
# Interact with Groq API
|
| 94 |
-
st.write("Querying the Groq API...")
|
| 95 |
-
chat_completion = client.chat.completions.create(
|
| 96 |
-
messages=[
|
| 97 |
-
{
|
| 98 |
-
"role": "user",
|
| 99 |
-
"content": relevant_text,
|
| 100 |
-
}
|
| 101 |
-
],
|
| 102 |
-
model="llama-3.3-70b-versatile",
|
| 103 |
-
)
|
| 104 |
-
st.write("Model Response:", chat_completion.choices[0].message.content)
|
| 105 |
else:
|
| 106 |
st.error("Failed to extract content from the document.")
|
| 107 |
|
| 108 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
import requests
|
| 3 |
import numpy as np
|
| 4 |
import faiss
|
| 5 |
from PyPDF2 import PdfReader
|
| 6 |
from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain.chains import RetrievalQA
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from langchain.chat_models import ChatOpenAI
|
| 12 |
from groq import Groq
|
| 13 |
import streamlit as st
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Initialize Groq client
|
| 16 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 17 |
|
| 18 |
# Function to download and extract content from a public Google Drive PDF link
|
|
|
|
| 35 |
text += page.extract_text()
|
| 36 |
return text
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# Streamlit app
|
| 39 |
+
st.title("Enhanced RAG with LangChain and Groq API")
|
| 40 |
|
| 41 |
# Predefined Google Drive link
|
| 42 |
drive_url = "https://drive.google.com/file/d/1XvqA1OIssRs2gbmOtKFKj-02yQ5X2yg0/view?usp=sharing"
|
|
|
|
| 47 |
if text:
|
| 48 |
st.write("Document extracted successfully!")
|
| 49 |
|
| 50 |
+
# LangChain embeddings and FAISS index setup
|
| 51 |
+
st.write("Building embeddings and FAISS index...")
|
| 52 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 53 |
+
faiss_index = FAISS.from_texts([text], embeddings)
|
| 54 |
+
|
| 55 |
+
# LangChain retriever
|
| 56 |
+
retriever = faiss_index.as_retriever(search_kwargs={"k": 3})
|
| 57 |
+
|
| 58 |
+
# LangChain QA chain
|
| 59 |
+
prompt_template = """
|
| 60 |
+
Use the following document excerpts to answer the user's question.
|
| 61 |
+
If the answer is not directly found in the document, say "The answer is not in the provided document.".
|
| 62 |
+
|
| 63 |
+
Document Excerpts:
|
| 64 |
+
{context}
|
| 65 |
+
|
| 66 |
+
Question:
|
| 67 |
+
{question}
|
| 68 |
+
|
| 69 |
+
Answer:
|
| 70 |
+
"""
|
| 71 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 72 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 73 |
+
llm=ChatOpenAI(model_name="gpt-3.5-turbo"),
|
| 74 |
+
retriever=retriever,
|
| 75 |
+
chain_type_kwargs={"prompt": PROMPT},
|
| 76 |
+
)
|
| 77 |
|
| 78 |
# Query input
|
| 79 |
query = st.text_input("Enter your query:")
|
| 80 |
if query:
|
| 81 |
+
st.write("Searching the document and generating a response...")
|
| 82 |
+
result = qa_chain.run(query)
|
| 83 |
+
st.write("Response:", result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
st.error("Failed to extract content from the document.")
|
| 86 |
|
|
|