Spaces:
Sleeping
Sleeping
| import os | |
| import nest_asyncio # noqa: E402 | |
| nest_asyncio.apply() | |
| # bring in our LLAMA_CLOUD_API_KEY | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| ##### LLAMAPARSE ##### | |
| from llama_parse import LlamaParse | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.embeddings.fastembed import FastEmbedEmbeddings | |
| from langchain_community.vectorstores import Qdrant | |
| from langchain_community.document_loaders import DirectoryLoader | |
| llamaparse_api_key = os.getenv("LLAMA_CLOUD_API_KEY") | |
| qdrant_url = os.getenv("QDRANT_URL") | |
| qdrant_api_key = os.getenv("QDRANT_API_KEY") | |
| #to_parse_documents = ["./data/example.pdf", "./data/uber_10q_march_2022.pdf"] | |
| parsed_data_file = r"data/parsed_data.pkl" | |
| output_md = r"data/output.md" | |
| loki = r"data" | |
| import pickle | |
| # Define a function to load parsed data if available, or parse if not | |
| def load_or_parse_data(loc): | |
| data_file = parsed_data_file | |
| if os.path.exists(data_file): | |
| # Load the parsed data from the file | |
| with open(data_file, "rb") as f: | |
| parsed_data = pickle.load(f) | |
| else: | |
| # Perform the parsing step and store the result in llama_parse_documents | |
| parsingInstructiontest10k = """The provided document can be a brochure , textbook ,guide. | |
| It contains many images and tables. | |
| Try to be precise while answering the questions""" | |
| parser = LlamaParse(api_key=llamaparse_api_key, result_type="markdown", parsing_instruction=parsingInstructiontest10k) | |
| llama_parse_documents = parser.load_data(loc) | |
| # Save the parsed data to a file | |
| with open(data_file, "wb") as f: | |
| pickle.dump(llama_parse_documents, f) | |
| # Set the parsed data to the variable | |
| parsed_data = llama_parse_documents | |
| return parsed_data | |
| # Create vector database | |
| def create_vector_database(loc): | |
| """ | |
| Creates a vector database using document loaders and embeddings. | |
| This function loads urls, | |
| splits the loaded documents into chunks, transforms them into embeddings using OllamaEmbeddings, | |
| and finally persists the embeddings into a Chroma vector database. | |
| """ | |
| # Call the function to either load or parse the data | |
| llama_parse_documents = load_or_parse_data(loc) | |
| #print(llama_parse_documents[1].text[:100]) | |
| #with open('data/output.md', 'a') as f: # Open the file in append mode ('a') | |
| # for doc in llama_parse_documents: | |
| # f.write(doc.text + '\n') | |
| with open(output_md, "a", encoding='utf-8') as f: # Open the file in append mode ('a') | |
| for doc in llama_parse_documents: | |
| f.write(doc.text + '\n') | |
| loader = DirectoryLoader(loki, glob="**/*.md", show_progress=True) | |
| documents = loader.load() | |
| # Split loaded documents into chunks | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100) | |
| docs = text_splitter.split_documents(documents) | |
| #len(docs) | |
| #docs[0] | |
| # Initialize Embeddings | |
| embeddings = FastEmbedEmbeddings() | |
| # Create and persist a Chroma vector database from the chunked documents | |
| qdrant = Qdrant.from_documents( | |
| documents=docs, | |
| embedding=embeddings, | |
| url=qdrant_url, | |
| collection_name="rag", | |
| api_key=qdrant_api_key | |
| ) | |
| #query it | |
| #query = "what is the agend of Financial Statements for 2022 ?" | |
| #found_doc = qdrant.similarity_search(query, k=3) | |
| #print(found_doc[0][:100]) | |
| print('Vector DB created successfully !') | |
| if __name__ == "__main__": | |
| create_vector_database() | |