test / app.py
Evanderlaan's picture
Update app.py
afb4f81 verified
from datasets import load_dataset
import streamlit as st
import pandas as pd
# Load your dataset (replace 'your-dataset' with the actual dataset name)
csv_url = 'https://huggingface.co/datasets/NENS/wim_data/resolve/main/input_employees/boran.csv'
#df = pd.read_csv('esther.csv')
#st.write(df)
#df.loc[df['week'] == 42, 'druk'] = 'heel druk'
#hoi= fs.ls("datasets/NENS/wim_data/input_employees/", detail=False)
#st.write(hoi)
#button = st.button('do it')
#if button:
#st.write(df)
#with fs.open("datasets/NENS/wim_data/input_employees/esther.csv", "w") as f:
# f.write("text,label")
# f.write("Fantastic movie!,good")
#https://huggingface.co/datasets/NENS/wim_data/resolve/main/input_employees/esther.csv
#df.to_csv("hf://spaces/NENS/test/test.csv")
#print('het werkt!')
from huggingface_hub import HfFileSystem
import pandas as pd
# Initialize HfFileSystem
fs = HfFileSystem()
# Define the path to your file in the Hugging Face Space
remote_csv_path = "esther.csv" # Path to the file in your repo
# Step 1: Read the CSV file from your Hugging Face Space
with fs.open(remote_csv_path, 'rb') as f:
df = pd.read_csv(f)
print("Original DataFrame:")
print(df)
# Step 2: Make some changes to the DataFrame
df.loc[df['week'] == 42, 'druk'] = 'heel druk'
print("Modified DataFrame:")
print(df)
button = st.button('do it')
if button:
# Step 3: Save the modified DataFrame back to a CSV file
with fs.open(remote_csv_path, 'wb') as f:
df.to_csv(f, index=False)
print(f"Saved changes back to {remote_csv_path}")