from datasets import load_dataset | |
import streamlit as st | |
import pandas as pd | |
# Load your dataset (replace 'your-dataset' with the actual dataset name) | |
csv_url = 'https://huggingface.co/datasets/NENS/wim_data/resolve/main/input_employees/boran.csv' | |
#df = pd.read_csv('esther.csv') | |
#st.write(df) | |
#df.loc[df['week'] == 42, 'druk'] = 'heel druk' | |
#hoi= fs.ls("datasets/NENS/wim_data/input_employees/", detail=False) | |
#st.write(hoi) | |
#button = st.button('do it') | |
#if button: | |
#st.write(df) | |
#with fs.open("datasets/NENS/wim_data/input_employees/esther.csv", "w") as f: | |
# f.write("text,label") | |
# f.write("Fantastic movie!,good") | |
#https://huggingface.co/datasets/NENS/wim_data/resolve/main/input_employees/esther.csv | |
#df.to_csv("hf://spaces/NENS/test/test.csv") | |
#print('het werkt!') | |
from huggingface_hub import HfFileSystem | |
import pandas as pd | |
# Initialize HfFileSystem | |
fs = HfFileSystem() | |
# Define the path to your file in the Hugging Face Space | |
remote_csv_path = "esther.csv" # Path to the file in your repo | |
# Step 1: Read the CSV file from your Hugging Face Space | |
with fs.open(remote_csv_path, 'rb') as f: | |
df = pd.read_csv(f) | |
print("Original DataFrame:") | |
print(df) | |
# Step 2: Make some changes to the DataFrame | |
df.loc[df['week'] == 42, 'druk'] = 'heel druk' | |
print("Modified DataFrame:") | |
print(df) | |
button = st.button('do it') | |
if button: | |
# Step 3: Save the modified DataFrame back to a CSV file | |
with fs.open(remote_csv_path, 'wb') as f: | |
df.to_csv(f, index=False) | |
print(f"Saved changes back to {remote_csv_path}") |