Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Provides metrics used by PTN.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from six.moves import xrange | |
import tensorflow as tf | |
slim = tf.contrib.slim | |
def add_image_pred_metrics( | |
inputs, outputs, num_views, upscale_factor): | |
"""Computes the image prediction metrics. | |
Args: | |
inputs: Input dictionary of the deep rotator model (model_rotator.py). | |
outputs: Output dictionary of the deep rotator model (model_rotator.py). | |
num_views: An integer scalar representing the total number | |
of different viewpoints for each object in the dataset. | |
upscale_factor: A float scalar representing the number of pixels | |
per image (num_channels x image_height x image_width). | |
Returns: | |
names_to_values: A dictionary representing the current value | |
of the metric. | |
names_to_updates: A dictionary representing the operation | |
that accumulates the error from a batch of data. | |
""" | |
names_to_values = dict() | |
names_to_updates = dict() | |
for k in xrange(num_views): | |
tmp_value, tmp_update = tf.contrib.metrics.streaming_mean_squared_error( | |
outputs['images_%d' % (k + 1)], inputs['images_%d' % (k + 1)]) | |
name = 'image_pred/rnn_%d' % (k + 1) | |
names_to_values.update({name: tmp_value * upscale_factor}) | |
names_to_updates.update({name: tmp_update}) | |
return names_to_values, names_to_updates | |
def add_mask_pred_metrics( | |
inputs, outputs, num_views, upscale_factor): | |
"""Computes the mask prediction metrics. | |
Args: | |
inputs: Input dictionary of the deep rotator model (model_rotator.py). | |
outputs: Output dictionary of the deep rotator model (model_rotator.py). | |
num_views: An integer scalar representing the total number | |
of different viewpoints for each object in the dataset. | |
upscale_factor: A float scalar representing the number of pixels | |
per image (num_channels x image_height x image_width). | |
Returns: | |
names_to_values: A dictionary representing the current value | |
of the metric. | |
names_to_updates: A dictionary representing the operation | |
that accumulates the error from a batch of data. | |
""" | |
names_to_values = dict() | |
names_to_updates = dict() | |
for k in xrange(num_views): | |
tmp_value, tmp_update = tf.contrib.metrics.streaming_mean_squared_error( | |
outputs['masks_%d' % (k + 1)], inputs['masks_%d' % (k + 1)]) | |
name = 'mask_pred/rnn_%d' % (k + 1) | |
names_to_values.update({name: tmp_value * upscale_factor}) | |
names_to_updates.update({name: tmp_update}) | |
return names_to_values, names_to_updates | |
def add_volume_iou_metrics(inputs, outputs): | |
"""Computes the per-instance volume IOU. | |
Args: | |
inputs: Input dictionary of the voxel generation model. | |
outputs: Output dictionary returned by the voxel generation model. | |
Returns: | |
names_to_values: metrics->values (dict). | |
names_to_updates: metrics->ops (dict). | |
""" | |
names_to_values = dict() | |
names_to_updates = dict() | |
labels = tf.greater_equal(inputs['voxels'], 0.5) | |
predictions = tf.greater_equal(outputs['voxels_1'], 0.5) | |
labels = (2 - tf.to_int32(labels)) - 1 | |
predictions = (3 - tf.to_int32(predictions) * 2) - 1 | |
tmp_values, tmp_updates = tf.metrics.mean_iou( | |
labels=labels, | |
predictions=predictions, | |
num_classes=3) | |
names_to_values['volume_iou'] = tmp_values * 3.0 | |
names_to_updates['volume_iou'] = tmp_updates | |
return names_to_values, names_to_updates | |