Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Test for Utility functions.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from six.moves import range | |
import tensorflow.compat.v1 as tf | |
from object_detection.tpu_exporters import utils | |
class UtilsTest(tf.test.TestCase): | |
def testBfloat16ToFloat32(self): | |
bfloat16_tensor = tf.random.uniform([2, 3], dtype=tf.bfloat16) | |
float32_tensor = utils.bfloat16_to_float32(bfloat16_tensor) | |
self.assertEqual(float32_tensor.dtype, tf.float32) | |
def testOtherDtypesNotConverted(self): | |
int32_tensor = tf.ones([2, 3], dtype=tf.int32) | |
converted_tensor = utils.bfloat16_to_float32(int32_tensor) | |
self.assertEqual(converted_tensor.dtype, tf.int32) | |
def testBfloat16ToFloat32Nested(self): | |
tensor_dict = { | |
'key1': tf.random.uniform([2, 3], dtype=tf.bfloat16), | |
'key2': [ | |
tf.random.uniform([1, 2], dtype=tf.bfloat16) for _ in range(3) | |
], | |
'key3': tf.ones([2, 3], dtype=tf.int32), | |
} | |
tensor_dict = utils.bfloat16_to_float32_nested(tensor_dict) | |
self.assertEqual(tensor_dict['key1'].dtype, tf.float32) | |
for t in tensor_dict['key2']: | |
self.assertEqual(t.dtype, tf.float32) | |
self.assertEqual(tensor_dict['key3'].dtype, tf.int32) | |
if __name__ == '__main__': | |
tf.test.main() | |