Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for preprocessor_builder.""" | |
import tensorflow.compat.v1 as tf | |
from google.protobuf import text_format | |
from object_detection.builders import preprocessor_builder | |
from object_detection.core import preprocessor | |
from object_detection.protos import preprocessor_pb2 | |
class PreprocessorBuilderTest(tf.test.TestCase): | |
def assert_dictionary_close(self, dict1, dict2): | |
"""Helper to check if two dicts with floatst or integers are close.""" | |
self.assertEqual(sorted(dict1.keys()), sorted(dict2.keys())) | |
for key in dict1: | |
value = dict1[key] | |
if isinstance(value, float): | |
self.assertAlmostEqual(value, dict2[key]) | |
else: | |
self.assertEqual(value, dict2[key]) | |
def test_build_normalize_image(self): | |
preprocessor_text_proto = """ | |
normalize_image { | |
original_minval: 0.0 | |
original_maxval: 255.0 | |
target_minval: -1.0 | |
target_maxval: 1.0 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.normalize_image) | |
self.assertEqual(args, { | |
'original_minval': 0.0, | |
'original_maxval': 255.0, | |
'target_minval': -1.0, | |
'target_maxval': 1.0, | |
}) | |
def test_build_random_horizontal_flip(self): | |
preprocessor_text_proto = """ | |
random_horizontal_flip { | |
keypoint_flip_permutation: 1 | |
keypoint_flip_permutation: 0 | |
keypoint_flip_permutation: 2 | |
keypoint_flip_permutation: 3 | |
keypoint_flip_permutation: 5 | |
keypoint_flip_permutation: 4 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_horizontal_flip) | |
self.assertEqual(args, {'keypoint_flip_permutation': (1, 0, 2, 3, 5, 4)}) | |
def test_build_random_vertical_flip(self): | |
preprocessor_text_proto = """ | |
random_vertical_flip { | |
keypoint_flip_permutation: 1 | |
keypoint_flip_permutation: 0 | |
keypoint_flip_permutation: 2 | |
keypoint_flip_permutation: 3 | |
keypoint_flip_permutation: 5 | |
keypoint_flip_permutation: 4 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_vertical_flip) | |
self.assertEqual(args, {'keypoint_flip_permutation': (1, 0, 2, 3, 5, 4)}) | |
def test_build_random_rotation90(self): | |
preprocessor_text_proto = """ | |
random_rotation90 {} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_rotation90) | |
self.assertEqual(args, {}) | |
def test_build_random_pixel_value_scale(self): | |
preprocessor_text_proto = """ | |
random_pixel_value_scale { | |
minval: 0.8 | |
maxval: 1.2 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_pixel_value_scale) | |
self.assert_dictionary_close(args, {'minval': 0.8, 'maxval': 1.2}) | |
def test_build_random_image_scale(self): | |
preprocessor_text_proto = """ | |
random_image_scale { | |
min_scale_ratio: 0.8 | |
max_scale_ratio: 2.2 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_image_scale) | |
self.assert_dictionary_close(args, {'min_scale_ratio': 0.8, | |
'max_scale_ratio': 2.2}) | |
def test_build_random_rgb_to_gray(self): | |
preprocessor_text_proto = """ | |
random_rgb_to_gray { | |
probability: 0.8 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_rgb_to_gray) | |
self.assert_dictionary_close(args, {'probability': 0.8}) | |
def test_build_random_adjust_brightness(self): | |
preprocessor_text_proto = """ | |
random_adjust_brightness { | |
max_delta: 0.2 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_adjust_brightness) | |
self.assert_dictionary_close(args, {'max_delta': 0.2}) | |
def test_build_random_adjust_contrast(self): | |
preprocessor_text_proto = """ | |
random_adjust_contrast { | |
min_delta: 0.7 | |
max_delta: 1.1 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_adjust_contrast) | |
self.assert_dictionary_close(args, {'min_delta': 0.7, 'max_delta': 1.1}) | |
def test_build_random_adjust_hue(self): | |
preprocessor_text_proto = """ | |
random_adjust_hue { | |
max_delta: 0.01 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_adjust_hue) | |
self.assert_dictionary_close(args, {'max_delta': 0.01}) | |
def test_build_random_adjust_saturation(self): | |
preprocessor_text_proto = """ | |
random_adjust_saturation { | |
min_delta: 0.75 | |
max_delta: 1.15 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_adjust_saturation) | |
self.assert_dictionary_close(args, {'min_delta': 0.75, 'max_delta': 1.15}) | |
def test_build_random_distort_color(self): | |
preprocessor_text_proto = """ | |
random_distort_color { | |
color_ordering: 1 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_distort_color) | |
self.assertEqual(args, {'color_ordering': 1}) | |
def test_build_random_jitter_boxes(self): | |
preprocessor_text_proto = """ | |
random_jitter_boxes { | |
ratio: 0.1 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_jitter_boxes) | |
self.assert_dictionary_close(args, {'ratio': 0.1}) | |
def test_build_random_crop_image(self): | |
preprocessor_text_proto = """ | |
random_crop_image { | |
min_object_covered: 0.75 | |
min_aspect_ratio: 0.75 | |
max_aspect_ratio: 1.5 | |
min_area: 0.25 | |
max_area: 0.875 | |
overlap_thresh: 0.5 | |
clip_boxes: False | |
random_coef: 0.125 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_crop_image) | |
self.assertEqual(args, { | |
'min_object_covered': 0.75, | |
'aspect_ratio_range': (0.75, 1.5), | |
'area_range': (0.25, 0.875), | |
'overlap_thresh': 0.5, | |
'clip_boxes': False, | |
'random_coef': 0.125, | |
}) | |
def test_build_random_pad_image(self): | |
preprocessor_text_proto = """ | |
random_pad_image { | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_pad_image) | |
self.assertEqual(args, { | |
'min_image_size': None, | |
'max_image_size': None, | |
'pad_color': None, | |
}) | |
def test_build_random_absolute_pad_image(self): | |
preprocessor_text_proto = """ | |
random_absolute_pad_image { | |
max_height_padding: 50 | |
max_width_padding: 100 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_absolute_pad_image) | |
self.assertEqual(args, { | |
'max_height_padding': 50, | |
'max_width_padding': 100, | |
'pad_color': None, | |
}) | |
def test_build_random_crop_pad_image(self): | |
preprocessor_text_proto = """ | |
random_crop_pad_image { | |
min_object_covered: 0.75 | |
min_aspect_ratio: 0.75 | |
max_aspect_ratio: 1.5 | |
min_area: 0.25 | |
max_area: 0.875 | |
overlap_thresh: 0.5 | |
clip_boxes: False | |
random_coef: 0.125 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_crop_pad_image) | |
self.assertEqual(args, { | |
'min_object_covered': 0.75, | |
'aspect_ratio_range': (0.75, 1.5), | |
'area_range': (0.25, 0.875), | |
'overlap_thresh': 0.5, | |
'clip_boxes': False, | |
'random_coef': 0.125, | |
'pad_color': None, | |
}) | |
def test_build_random_crop_pad_image_with_optional_parameters(self): | |
preprocessor_text_proto = """ | |
random_crop_pad_image { | |
min_object_covered: 0.75 | |
min_aspect_ratio: 0.75 | |
max_aspect_ratio: 1.5 | |
min_area: 0.25 | |
max_area: 0.875 | |
overlap_thresh: 0.5 | |
clip_boxes: False | |
random_coef: 0.125 | |
min_padded_size_ratio: 0.5 | |
min_padded_size_ratio: 0.75 | |
max_padded_size_ratio: 0.5 | |
max_padded_size_ratio: 0.75 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_crop_pad_image) | |
self.assertEqual(args, { | |
'min_object_covered': 0.75, | |
'aspect_ratio_range': (0.75, 1.5), | |
'area_range': (0.25, 0.875), | |
'overlap_thresh': 0.5, | |
'clip_boxes': False, | |
'random_coef': 0.125, | |
'min_padded_size_ratio': (0.5, 0.75), | |
'max_padded_size_ratio': (0.5, 0.75), | |
'pad_color': None, | |
}) | |
def test_build_random_crop_to_aspect_ratio(self): | |
preprocessor_text_proto = """ | |
random_crop_to_aspect_ratio { | |
aspect_ratio: 0.85 | |
overlap_thresh: 0.35 | |
clip_boxes: False | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_crop_to_aspect_ratio) | |
self.assert_dictionary_close(args, {'aspect_ratio': 0.85, | |
'overlap_thresh': 0.35, | |
'clip_boxes': False}) | |
def test_build_random_black_patches(self): | |
preprocessor_text_proto = """ | |
random_black_patches { | |
max_black_patches: 20 | |
probability: 0.95 | |
size_to_image_ratio: 0.12 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_black_patches) | |
self.assert_dictionary_close(args, {'max_black_patches': 20, | |
'probability': 0.95, | |
'size_to_image_ratio': 0.12}) | |
def test_build_random_jpeg_quality(self): | |
preprocessor_text_proto = """ | |
random_jpeg_quality { | |
random_coef: 0.5 | |
min_jpeg_quality: 40 | |
max_jpeg_quality: 90 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Parse(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_jpeg_quality) | |
self.assert_dictionary_close(args, {'random_coef': 0.5, | |
'min_jpeg_quality': 40, | |
'max_jpeg_quality': 90}) | |
def test_build_random_downscale_to_target_pixels(self): | |
preprocessor_text_proto = """ | |
random_downscale_to_target_pixels { | |
random_coef: 0.5 | |
min_target_pixels: 200 | |
max_target_pixels: 900 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Parse(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_downscale_to_target_pixels) | |
self.assert_dictionary_close(args, { | |
'random_coef': 0.5, | |
'min_target_pixels': 200, | |
'max_target_pixels': 900 | |
}) | |
def test_build_random_patch_gaussian(self): | |
preprocessor_text_proto = """ | |
random_patch_gaussian { | |
random_coef: 0.5 | |
min_patch_size: 10 | |
max_patch_size: 300 | |
min_gaussian_stddev: 0.2 | |
max_gaussian_stddev: 1.5 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Parse(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_patch_gaussian) | |
self.assert_dictionary_close(args, { | |
'random_coef': 0.5, | |
'min_patch_size': 10, | |
'max_patch_size': 300, | |
'min_gaussian_stddev': 0.2, | |
'max_gaussian_stddev': 1.5 | |
}) | |
def test_auto_augment_image(self): | |
preprocessor_text_proto = """ | |
autoaugment_image { | |
policy_name: 'v0' | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.autoaugment_image) | |
self.assert_dictionary_close(args, {'policy_name': 'v0'}) | |
def test_drop_label_probabilistically(self): | |
preprocessor_text_proto = """ | |
drop_label_probabilistically{ | |
label: 2 | |
drop_probability: 0.5 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.drop_label_probabilistically) | |
self.assert_dictionary_close(args, { | |
'dropped_label': 2, | |
'drop_probability': 0.5 | |
}) | |
def test_remap_labels(self): | |
preprocessor_text_proto = """ | |
remap_labels{ | |
original_labels: 1 | |
original_labels: 2 | |
new_label: 3 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.remap_labels) | |
self.assert_dictionary_close(args, { | |
'original_labels': [1, 2], | |
'new_label': 3 | |
}) | |
def test_build_random_resize_method(self): | |
preprocessor_text_proto = """ | |
random_resize_method { | |
target_height: 75 | |
target_width: 100 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_resize_method) | |
self.assert_dictionary_close(args, {'target_size': [75, 100]}) | |
def test_build_scale_boxes_to_pixel_coordinates(self): | |
preprocessor_text_proto = """ | |
scale_boxes_to_pixel_coordinates {} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.scale_boxes_to_pixel_coordinates) | |
self.assertEqual(args, {}) | |
def test_build_resize_image(self): | |
preprocessor_text_proto = """ | |
resize_image { | |
new_height: 75 | |
new_width: 100 | |
method: BICUBIC | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.resize_image) | |
self.assertEqual(args, {'new_height': 75, | |
'new_width': 100, | |
'method': tf.image.ResizeMethod.BICUBIC}) | |
def test_build_rgb_to_gray(self): | |
preprocessor_text_proto = """ | |
rgb_to_gray {} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.rgb_to_gray) | |
self.assertEqual(args, {}) | |
def test_build_subtract_channel_mean(self): | |
preprocessor_text_proto = """ | |
subtract_channel_mean { | |
means: [1.0, 2.0, 3.0] | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.subtract_channel_mean) | |
self.assertEqual(args, {'means': [1.0, 2.0, 3.0]}) | |
def test_random_self_concat_image(self): | |
preprocessor_text_proto = """ | |
random_self_concat_image { | |
concat_vertical_probability: 0.5 | |
concat_horizontal_probability: 0.25 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_self_concat_image) | |
self.assertEqual(args, {'concat_vertical_probability': 0.5, | |
'concat_horizontal_probability': 0.25}) | |
def test_build_ssd_random_crop(self): | |
preprocessor_text_proto = """ | |
ssd_random_crop { | |
operations { | |
min_object_covered: 0.0 | |
min_aspect_ratio: 0.875 | |
max_aspect_ratio: 1.125 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.0 | |
clip_boxes: False | |
random_coef: 0.375 | |
} | |
operations { | |
min_object_covered: 0.25 | |
min_aspect_ratio: 0.75 | |
max_aspect_ratio: 1.5 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.25 | |
clip_boxes: True | |
random_coef: 0.375 | |
} | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.ssd_random_crop) | |
self.assertEqual(args, {'min_object_covered': [0.0, 0.25], | |
'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)], | |
'area_range': [(0.5, 1.0), (0.5, 1.0)], | |
'overlap_thresh': [0.0, 0.25], | |
'clip_boxes': [False, True], | |
'random_coef': [0.375, 0.375]}) | |
def test_build_ssd_random_crop_empty_operations(self): | |
preprocessor_text_proto = """ | |
ssd_random_crop { | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.ssd_random_crop) | |
self.assertEqual(args, {}) | |
def test_build_ssd_random_crop_pad(self): | |
preprocessor_text_proto = """ | |
ssd_random_crop_pad { | |
operations { | |
min_object_covered: 0.0 | |
min_aspect_ratio: 0.875 | |
max_aspect_ratio: 1.125 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.0 | |
clip_boxes: False | |
random_coef: 0.375 | |
min_padded_size_ratio: [1.0, 1.0] | |
max_padded_size_ratio: [2.0, 2.0] | |
pad_color_r: 0.5 | |
pad_color_g: 0.5 | |
pad_color_b: 0.5 | |
} | |
operations { | |
min_object_covered: 0.25 | |
min_aspect_ratio: 0.75 | |
max_aspect_ratio: 1.5 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.25 | |
clip_boxes: True | |
random_coef: 0.375 | |
min_padded_size_ratio: [1.0, 1.0] | |
max_padded_size_ratio: [2.0, 2.0] | |
pad_color_r: 0.5 | |
pad_color_g: 0.5 | |
pad_color_b: 0.5 | |
} | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.ssd_random_crop_pad) | |
self.assertEqual(args, {'min_object_covered': [0.0, 0.25], | |
'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)], | |
'area_range': [(0.5, 1.0), (0.5, 1.0)], | |
'overlap_thresh': [0.0, 0.25], | |
'clip_boxes': [False, True], | |
'random_coef': [0.375, 0.375], | |
'min_padded_size_ratio': [(1.0, 1.0), (1.0, 1.0)], | |
'max_padded_size_ratio': [(2.0, 2.0), (2.0, 2.0)], | |
'pad_color': [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]}) | |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): | |
preprocessor_text_proto = """ | |
ssd_random_crop_fixed_aspect_ratio { | |
operations { | |
min_object_covered: 0.0 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.0 | |
clip_boxes: False | |
random_coef: 0.375 | |
} | |
operations { | |
min_object_covered: 0.25 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.25 | |
clip_boxes: True | |
random_coef: 0.375 | |
} | |
aspect_ratio: 0.875 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) | |
self.assertEqual(args, {'min_object_covered': [0.0, 0.25], | |
'aspect_ratio': 0.875, | |
'area_range': [(0.5, 1.0), (0.5, 1.0)], | |
'overlap_thresh': [0.0, 0.25], | |
'clip_boxes': [False, True], | |
'random_coef': [0.375, 0.375]}) | |
def test_build_ssd_random_crop_pad_fixed_aspect_ratio(self): | |
preprocessor_text_proto = """ | |
ssd_random_crop_pad_fixed_aspect_ratio { | |
operations { | |
min_object_covered: 0.0 | |
min_aspect_ratio: 0.875 | |
max_aspect_ratio: 1.125 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.0 | |
clip_boxes: False | |
random_coef: 0.375 | |
} | |
operations { | |
min_object_covered: 0.25 | |
min_aspect_ratio: 0.75 | |
max_aspect_ratio: 1.5 | |
min_area: 0.5 | |
max_area: 1.0 | |
overlap_thresh: 0.25 | |
clip_boxes: True | |
random_coef: 0.375 | |
} | |
aspect_ratio: 0.875 | |
min_padded_size_ratio: [1.0, 1.0] | |
max_padded_size_ratio: [2.0, 2.0] | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, | |
preprocessor.ssd_random_crop_pad_fixed_aspect_ratio) | |
self.assertEqual(args, {'min_object_covered': [0.0, 0.25], | |
'aspect_ratio': 0.875, | |
'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)], | |
'area_range': [(0.5, 1.0), (0.5, 1.0)], | |
'overlap_thresh': [0.0, 0.25], | |
'clip_boxes': [False, True], | |
'random_coef': [0.375, 0.375], | |
'min_padded_size_ratio': (1.0, 1.0), | |
'max_padded_size_ratio': (2.0, 2.0)}) | |
def test_build_normalize_image_convert_class_logits_to_softmax(self): | |
preprocessor_text_proto = """ | |
convert_class_logits_to_softmax { | |
temperature: 2 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.convert_class_logits_to_softmax) | |
self.assertEqual(args, {'temperature': 2}) | |
def test_random_crop_by_scale(self): | |
preprocessor_text_proto = """ | |
random_square_crop_by_scale { | |
scale_min: 0.25 | |
scale_max: 2.0 | |
num_scales: 8 | |
} | |
""" | |
preprocessor_proto = preprocessor_pb2.PreprocessingStep() | |
text_format.Merge(preprocessor_text_proto, preprocessor_proto) | |
function, args = preprocessor_builder.build(preprocessor_proto) | |
self.assertEqual(function, preprocessor.random_square_crop_by_scale) | |
self.assertEqual(args, { | |
'scale_min': 0.25, | |
'scale_max': 2.0, | |
'num_scales': 8, | |
'max_border': 128 | |
}) | |
if __name__ == '__main__': | |
tf.test.main() | |