NCTC / models /research /object_detection /builders /optimizer_builder_tf1_test.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
# Lint as: python2, python3
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for optimizer_builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import six
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.builders import optimizer_builder
from object_detection.protos import optimizer_pb2
from object_detection.utils import tf_version
# pylint: disable=g-import-not-at-top
if tf_version.is_tf1():
from tensorflow.contrib import opt as contrib_opt
# pylint: enable=g-import-not-at-top
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class LearningRateBuilderTest(tf.test.TestCase):
def testBuildConstantLearningRate(self):
learning_rate_text_proto = """
constant_learning_rate {
learning_rate: 0.004
}
"""
learning_rate_proto = optimizer_pb2.LearningRate()
text_format.Merge(learning_rate_text_proto, learning_rate_proto)
learning_rate = optimizer_builder._create_learning_rate(
learning_rate_proto)
self.assertTrue(
six.ensure_str(learning_rate.op.name).endswith('learning_rate'))
with self.test_session():
learning_rate_out = learning_rate.eval()
self.assertAlmostEqual(learning_rate_out, 0.004)
def testBuildExponentialDecayLearningRate(self):
learning_rate_text_proto = """
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 99999
decay_factor: 0.85
staircase: false
}
"""
learning_rate_proto = optimizer_pb2.LearningRate()
text_format.Merge(learning_rate_text_proto, learning_rate_proto)
learning_rate = optimizer_builder._create_learning_rate(
learning_rate_proto)
self.assertTrue(
six.ensure_str(learning_rate.op.name).endswith('learning_rate'))
self.assertIsInstance(learning_rate, tf.Tensor)
def testBuildManualStepLearningRate(self):
learning_rate_text_proto = """
manual_step_learning_rate {
initial_learning_rate: 0.002
schedule {
step: 100
learning_rate: 0.006
}
schedule {
step: 90000
learning_rate: 0.00006
}
warmup: true
}
"""
learning_rate_proto = optimizer_pb2.LearningRate()
text_format.Merge(learning_rate_text_proto, learning_rate_proto)
learning_rate = optimizer_builder._create_learning_rate(
learning_rate_proto)
self.assertIsInstance(learning_rate, tf.Tensor)
def testBuildCosineDecayLearningRate(self):
learning_rate_text_proto = """
cosine_decay_learning_rate {
learning_rate_base: 0.002
total_steps: 20000
warmup_learning_rate: 0.0001
warmup_steps: 1000
hold_base_rate_steps: 20000
}
"""
learning_rate_proto = optimizer_pb2.LearningRate()
text_format.Merge(learning_rate_text_proto, learning_rate_proto)
learning_rate = optimizer_builder._create_learning_rate(
learning_rate_proto)
self.assertIsInstance(learning_rate, tf.Tensor)
def testRaiseErrorOnEmptyLearningRate(self):
learning_rate_text_proto = """
"""
learning_rate_proto = optimizer_pb2.LearningRate()
text_format.Merge(learning_rate_text_proto, learning_rate_proto)
with self.assertRaises(ValueError):
optimizer_builder._create_learning_rate(learning_rate_proto)
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class OptimizerBuilderTest(tf.test.TestCase):
def testBuildRMSPropOptimizer(self):
optimizer_text_proto = """
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
use_moving_average: false
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertIsInstance(optimizer, tf.train.RMSPropOptimizer)
def testBuildMomentumOptimizer(self):
optimizer_text_proto = """
momentum_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.001
}
}
momentum_optimizer_value: 0.99
}
use_moving_average: false
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertIsInstance(optimizer, tf.train.MomentumOptimizer)
def testBuildAdamOptimizer(self):
optimizer_text_proto = """
adam_optimizer: {
epsilon: 1e-6
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: false
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertIsInstance(optimizer, tf.train.AdamOptimizer)
def testBuildMovingAverageOptimizer(self):
optimizer_text_proto = """
adam_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: True
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertIsInstance(optimizer, contrib_opt.MovingAverageOptimizer)
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self):
optimizer_text_proto = """
adam_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: True
moving_average_decay: 0.2
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertIsInstance(optimizer, contrib_opt.MovingAverageOptimizer)
# TODO(rathodv): Find a way to not depend on the private members.
self.assertAlmostEqual(optimizer._ema._decay, 0.2)
def testBuildEmptyOptimizer(self):
optimizer_text_proto = """
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
with self.assertRaises(ValueError):
optimizer_builder.build(optimizer_proto)
if __name__ == '__main__':
tf.test.main()