Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Input reader builder. | |
Creates data sources for DetectionModels from an InputReader config. See | |
input_reader.proto for options. | |
Note: If users wishes to also use their own InputReaders with the Object | |
Detection configuration framework, they should define their own builder function | |
that wraps the build function. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow.compat.v1 as tf | |
import tf_slim as slim | |
from object_detection.data_decoders import tf_example_decoder | |
from object_detection.data_decoders import tf_sequence_example_decoder | |
from object_detection.protos import input_reader_pb2 | |
parallel_reader = slim.parallel_reader | |
def build(input_reader_config): | |
"""Builds a tensor dictionary based on the InputReader config. | |
Args: | |
input_reader_config: A input_reader_pb2.InputReader object. | |
Returns: | |
A tensor dict based on the input_reader_config. | |
Raises: | |
ValueError: On invalid input reader proto. | |
ValueError: If no input paths are specified. | |
""" | |
if not isinstance(input_reader_config, input_reader_pb2.InputReader): | |
raise ValueError('input_reader_config not of type ' | |
'input_reader_pb2.InputReader.') | |
if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader': | |
config = input_reader_config.tf_record_input_reader | |
if not config.input_path: | |
raise ValueError('At least one input path must be specified in ' | |
'`input_reader_config`.') | |
_, string_tensor = parallel_reader.parallel_read( | |
config.input_path[:], # Convert `RepeatedScalarContainer` to list. | |
reader_class=tf.TFRecordReader, | |
num_epochs=(input_reader_config.num_epochs | |
if input_reader_config.num_epochs else None), | |
num_readers=input_reader_config.num_readers, | |
shuffle=input_reader_config.shuffle, | |
dtypes=[tf.string, tf.string], | |
capacity=input_reader_config.queue_capacity, | |
min_after_dequeue=input_reader_config.min_after_dequeue) | |
label_map_proto_file = None | |
if input_reader_config.HasField('label_map_path'): | |
label_map_proto_file = input_reader_config.label_map_path | |
input_type = input_reader_config.input_type | |
if input_type == input_reader_pb2.InputType.Value('TF_EXAMPLE'): | |
decoder = tf_example_decoder.TfExampleDecoder( | |
load_instance_masks=input_reader_config.load_instance_masks, | |
instance_mask_type=input_reader_config.mask_type, | |
label_map_proto_file=label_map_proto_file, | |
load_context_features=input_reader_config.load_context_features) | |
return decoder.decode(string_tensor) | |
elif input_type == input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE'): | |
decoder = tf_sequence_example_decoder.TfSequenceExampleDecoder( | |
label_map_proto_file=label_map_proto_file, | |
load_context_features=input_reader_config.load_context_features) | |
return decoder.decode(string_tensor) | |
raise ValueError('Unsupported input_type.') | |
raise ValueError('Unsupported input_reader_config.') | |