Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for decoder_builder.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import numpy as np | |
import tensorflow.compat.v1 as tf | |
from google.protobuf import text_format | |
from object_detection.builders import decoder_builder | |
from object_detection.core import standard_fields as fields | |
from object_detection.dataset_tools import seq_example_util | |
from object_detection.protos import input_reader_pb2 | |
from object_detection.utils import dataset_util | |
from object_detection.utils import test_case | |
def _get_labelmap_path(): | |
"""Returns an absolute path to label map file.""" | |
parent_path = os.path.dirname(tf.resource_loader.get_data_files_path()) | |
return os.path.join(parent_path, 'data', | |
'pet_label_map.pbtxt') | |
class DecoderBuilderTest(test_case.TestCase): | |
def _make_serialized_tf_example(self, has_additional_channels=False): | |
image_tensor_np = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) | |
additional_channels_tensor_np = np.random.randint( | |
255, size=(4, 5, 1)).astype(np.uint8) | |
flat_mask = (4 * 5) * [1.0] | |
def graph_fn(image_tensor): | |
encoded_jpeg = tf.image.encode_jpeg(image_tensor) | |
return encoded_jpeg | |
encoded_jpeg = self.execute_cpu(graph_fn, [image_tensor_np]) | |
encoded_additional_channels_jpeg = self.execute_cpu( | |
graph_fn, [additional_channels_tensor_np]) | |
features = { | |
'image/source_id': dataset_util.bytes_feature('0'.encode()), | |
'image/encoded': dataset_util.bytes_feature(encoded_jpeg), | |
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), | |
'image/height': dataset_util.int64_feature(4), | |
'image/width': dataset_util.int64_feature(5), | |
'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), | |
'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), | |
'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), | |
'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), | |
'image/object/class/label': dataset_util.int64_list_feature([2]), | |
'image/object/mask': dataset_util.float_list_feature(flat_mask), | |
} | |
if has_additional_channels: | |
additional_channels_key = 'image/additional_channels/encoded' | |
features[additional_channels_key] = dataset_util.bytes_list_feature( | |
[encoded_additional_channels_jpeg] * 2) | |
example = tf.train.Example(features=tf.train.Features(feature=features)) | |
return example.SerializeToString() | |
def _make_random_serialized_jpeg_images(self, num_frames, image_height, | |
image_width): | |
def graph_fn(): | |
images = tf.cast(tf.random.uniform( | |
[num_frames, image_height, image_width, 3], | |
maxval=256, | |
dtype=tf.int32), dtype=tf.uint8) | |
images_list = tf.unstack(images, axis=0) | |
encoded_images = [tf.io.encode_jpeg(image) for image in images_list] | |
return encoded_images | |
return self.execute_cpu(graph_fn, []) | |
def _make_serialized_tf_sequence_example(self): | |
num_frames = 4 | |
image_height = 20 | |
image_width = 30 | |
image_source_ids = [str(i) for i in range(num_frames)] | |
encoded_images = self._make_random_serialized_jpeg_images( | |
num_frames, image_height, image_width) | |
sequence_example_serialized = seq_example_util.make_sequence_example( | |
dataset_name='video_dataset', | |
video_id='video', | |
encoded_images=encoded_images, | |
image_height=image_height, | |
image_width=image_width, | |
image_source_ids=image_source_ids, | |
image_format='JPEG', | |
is_annotated=[[1], [1], [1], [1]], | |
bboxes=[ | |
[[]], # Frame 0. | |
[[0., 0., 1., 1.]], # Frame 1. | |
[[0., 0., 1., 1.], | |
[0.1, 0.1, 0.2, 0.2]], # Frame 2. | |
[[]], # Frame 3. | |
], | |
label_strings=[ | |
[], # Frame 0. | |
['Abyssinian'], # Frame 1. | |
['Abyssinian', 'american_bulldog'], # Frame 2. | |
[], # Frame 3 | |
]).SerializeToString() | |
return sequence_example_serialized | |
def test_build_tf_record_input_reader(self): | |
input_reader_text_proto = 'tf_record_input_reader {}' | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Parse(input_reader_text_proto, input_reader_proto) | |
decoder = decoder_builder.build(input_reader_proto) | |
serialized_seq_example = self._make_serialized_tf_example() | |
def graph_fn(): | |
tensor_dict = decoder.decode(serialized_seq_example) | |
return (tensor_dict[fields.InputDataFields.image], | |
tensor_dict[fields.InputDataFields.groundtruth_classes], | |
tensor_dict[fields.InputDataFields.groundtruth_boxes]) | |
(image, groundtruth_classes, | |
groundtruth_boxes) = self.execute_cpu(graph_fn, []) | |
self.assertEqual((4, 5, 3), image.shape) | |
self.assertAllEqual([2], groundtruth_classes) | |
self.assertEqual((1, 4), groundtruth_boxes.shape) | |
self.assertAllEqual([0.0, 0.0, 1.0, 1.0], groundtruth_boxes[0]) | |
def test_build_tf_record_input_reader_sequence_example(self): | |
label_map_path = _get_labelmap_path() | |
input_reader_text_proto = """ | |
input_type: TF_SEQUENCE_EXAMPLE | |
tf_record_input_reader {} | |
""" | |
input_reader_proto = input_reader_pb2.InputReader() | |
input_reader_proto.label_map_path = label_map_path | |
text_format.Parse(input_reader_text_proto, input_reader_proto) | |
serialized_seq_example = self._make_serialized_tf_sequence_example() | |
def graph_fn(): | |
decoder = decoder_builder.build(input_reader_proto) | |
tensor_dict = decoder.decode(serialized_seq_example) | |
return (tensor_dict[fields.InputDataFields.image], | |
tensor_dict[fields.InputDataFields.groundtruth_classes], | |
tensor_dict[fields.InputDataFields.groundtruth_boxes], | |
tensor_dict[fields.InputDataFields.num_groundtruth_boxes]) | |
(actual_image, actual_groundtruth_classes, actual_groundtruth_boxes, | |
actual_num_groundtruth_boxes) = self.execute_cpu(graph_fn, []) | |
expected_groundtruth_classes = [[-1, -1], [1, -1], [1, 2], [-1, -1]] | |
expected_groundtruth_boxes = [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 1.0, 1.0], [0.1, 0.1, 0.2, 0.2]], | |
[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]] | |
expected_num_groundtruth_boxes = [0, 1, 2, 0] | |
# Sequence example images are encoded. | |
self.assertEqual((4,), actual_image.shape) | |
self.assertAllEqual(expected_groundtruth_classes, | |
actual_groundtruth_classes) | |
self.assertAllClose(expected_groundtruth_boxes, | |
actual_groundtruth_boxes) | |
self.assertAllClose( | |
expected_num_groundtruth_boxes, actual_num_groundtruth_boxes) | |
def test_build_tf_record_input_reader_and_load_instance_masks(self): | |
input_reader_text_proto = """ | |
load_instance_masks: true | |
tf_record_input_reader {} | |
""" | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Parse(input_reader_text_proto, input_reader_proto) | |
decoder = decoder_builder.build(input_reader_proto) | |
serialized_seq_example = self._make_serialized_tf_example() | |
def graph_fn(): | |
tensor_dict = decoder.decode(serialized_seq_example) | |
return tensor_dict[fields.InputDataFields.groundtruth_instance_masks] | |
masks = self.execute_cpu(graph_fn, []) | |
self.assertAllEqual((1, 4, 5), masks.shape) | |
if __name__ == '__main__': | |
tf.test.main() | |