Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""DataDecoder builder. | |
Creates DataDecoders from InputReader configs. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from object_detection.data_decoders import tf_example_decoder | |
from object_detection.data_decoders import tf_sequence_example_decoder | |
from object_detection.protos import input_reader_pb2 | |
def build(input_reader_config): | |
"""Builds a DataDecoder based only on the open source config proto. | |
Args: | |
input_reader_config: An input_reader_pb2.InputReader object. | |
Returns: | |
A DataDecoder based on the input_reader_config. | |
Raises: | |
ValueError: On invalid input reader proto. | |
""" | |
if not isinstance(input_reader_config, input_reader_pb2.InputReader): | |
raise ValueError('input_reader_config not of type ' | |
'input_reader_pb2.InputReader.') | |
if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader': | |
label_map_proto_file = None | |
if input_reader_config.HasField('label_map_path'): | |
label_map_proto_file = input_reader_config.label_map_path | |
input_type = input_reader_config.input_type | |
if input_type == input_reader_pb2.InputType.Value('TF_EXAMPLE'): | |
decoder = tf_example_decoder.TfExampleDecoder( | |
load_instance_masks=input_reader_config.load_instance_masks, | |
load_multiclass_scores=input_reader_config.load_multiclass_scores, | |
load_context_features=input_reader_config.load_context_features, | |
instance_mask_type=input_reader_config.mask_type, | |
label_map_proto_file=label_map_proto_file, | |
use_display_name=input_reader_config.use_display_name, | |
num_additional_channels=input_reader_config.num_additional_channels, | |
num_keypoints=input_reader_config.num_keypoints, | |
expand_hierarchy_labels=input_reader_config.expand_labels_hierarchy) | |
return decoder | |
elif input_type == input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE'): | |
decoder = tf_sequence_example_decoder.TfSequenceExampleDecoder( | |
label_map_proto_file=label_map_proto_file, | |
load_context_features=input_reader_config.load_context_features) | |
return decoder | |
raise ValueError('Unsupported input_type in config.') | |
raise ValueError('Unsupported input_reader_config.') | |