Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tensorflow ops to calibrate class predictions and background class.""" | |
import tensorflow.compat.v1 as tf | |
from object_detection.utils import shape_utils | |
def _find_interval_containing_new_value(x, new_value): | |
"""Find the index of x (ascending-ordered) after which new_value occurs.""" | |
new_value_shape = shape_utils.combined_static_and_dynamic_shape(new_value)[0] | |
x_shape = shape_utils.combined_static_and_dynamic_shape(x)[0] | |
compare = tf.cast(tf.reshape(new_value, shape=(new_value_shape, 1)) >= | |
tf.reshape(x, shape=(1, x_shape)), | |
dtype=tf.int32) | |
diff = compare[:, 1:] - compare[:, :-1] | |
interval_idx = tf.argmin(diff, axis=1) | |
return interval_idx | |
def _tf_linear_interp1d(x_to_interpolate, fn_x, fn_y): | |
"""Tensorflow implementation of 1d linear interpolation. | |
Args: | |
x_to_interpolate: tf.float32 Tensor of shape (num_examples,) over which 1d | |
linear interpolation is performed. | |
fn_x: Monotonically-increasing, non-repeating tf.float32 Tensor of shape | |
(length,) used as the domain to approximate a function. | |
fn_y: tf.float32 Tensor of shape (length,) used as the range to approximate | |
a function. | |
Returns: | |
tf.float32 Tensor of shape (num_examples,) | |
""" | |
x_pad = tf.concat([fn_x[:1] - 1, fn_x, fn_x[-1:] + 1], axis=0) | |
y_pad = tf.concat([fn_y[:1], fn_y, fn_y[-1:]], axis=0) | |
interval_idx = _find_interval_containing_new_value(x_pad, x_to_interpolate) | |
# Interpolate | |
alpha = ( | |
(x_to_interpolate - tf.gather(x_pad, interval_idx)) / | |
(tf.gather(x_pad, interval_idx + 1) - tf.gather(x_pad, interval_idx))) | |
interpolation = ((1 - alpha) * tf.gather(y_pad, interval_idx) + | |
alpha * tf.gather(y_pad, interval_idx + 1)) | |
return interpolation | |
def _function_approximation_proto_to_tf_tensors(x_y_pairs_message): | |
"""Extracts (x,y) pairs from a XYPairs message. | |
Args: | |
x_y_pairs_message: calibration_pb2..XYPairs proto | |
Returns: | |
tf_x: tf.float32 tensor of shape (number_xy_pairs,) for function domain. | |
tf_y: tf.float32 tensor of shape (number_xy_pairs,) for function range. | |
""" | |
tf_x = tf.convert_to_tensor([x_y_pair.x | |
for x_y_pair | |
in x_y_pairs_message.x_y_pair], | |
dtype=tf.float32) | |
tf_y = tf.convert_to_tensor([x_y_pair.y | |
for x_y_pair | |
in x_y_pairs_message.x_y_pair], | |
dtype=tf.float32) | |
return tf_x, tf_y | |
def _get_class_id_function_dict(calibration_config): | |
"""Create a dictionary mapping class id to function approximations. | |
Args: | |
calibration_config: calibration_pb2 proto containing | |
id_function_approximations. | |
Returns: | |
Dictionary mapping a class id to a tuple of TF tensors to be used for | |
function approximation. | |
""" | |
class_id_function_dict = {} | |
class_id_xy_pairs_map = ( | |
calibration_config.class_id_function_approximations.class_id_xy_pairs_map) | |
for class_id in class_id_xy_pairs_map: | |
class_id_function_dict[class_id] = ( | |
_function_approximation_proto_to_tf_tensors( | |
class_id_xy_pairs_map[class_id])) | |
return class_id_function_dict | |
def build(calibration_config): | |
"""Returns a function that calibrates Tensorflow model scores. | |
All returned functions are expected to apply positive monotonic | |
transformations to inputs (i.e. score ordering is strictly preserved or | |
adjacent scores are mapped to the same score, but an input of lower value | |
should never be exceed an input of higher value after transformation). For | |
class-agnostic calibration, positive monotonicity should hold across all | |
scores. In class-specific cases, positive monotonicity should hold within each | |
class. | |
Args: | |
calibration_config: calibration_pb2.CalibrationConfig proto. | |
Returns: | |
Function that that accepts class_predictions_with_background and calibrates | |
the output based on calibration_config's parameters. | |
Raises: | |
ValueError: No calibration builder defined for "Oneof" in | |
calibration_config. | |
""" | |
# Linear Interpolation (usually used as a result of calibration via | |
# isotonic regression). | |
if calibration_config.WhichOneof('calibrator') == 'function_approximation': | |
def calibration_fn(class_predictions_with_background): | |
"""Calibrate predictions via 1-d linear interpolation. | |
Predictions scores are linearly interpolated based on a class-agnostic | |
function approximation. Note that the 0-indexed background class is also | |
transformed. | |
Args: | |
class_predictions_with_background: tf.float32 tensor of shape | |
[batch_size, num_anchors, num_classes + 1] containing scores on the | |
interval [0,1]. This is usually produced by a sigmoid or softmax layer | |
and the result of calling the `predict` method of a detection model. | |
Returns: | |
tf.float32 tensor of the same shape as the input with values on the | |
interval [0, 1]. | |
""" | |
# Flattening Tensors and then reshaping at the end. | |
flat_class_predictions_with_background = tf.reshape( | |
class_predictions_with_background, shape=[-1]) | |
fn_x, fn_y = _function_approximation_proto_to_tf_tensors( | |
calibration_config.function_approximation.x_y_pairs) | |
updated_scores = _tf_linear_interp1d( | |
flat_class_predictions_with_background, fn_x, fn_y) | |
# Un-flatten the scores | |
original_detections_shape = shape_utils.combined_static_and_dynamic_shape( | |
class_predictions_with_background) | |
calibrated_class_predictions_with_background = tf.reshape( | |
updated_scores, | |
shape=original_detections_shape, | |
name='calibrate_scores') | |
return calibrated_class_predictions_with_background | |
elif (calibration_config.WhichOneof('calibrator') == | |
'class_id_function_approximations'): | |
def calibration_fn(class_predictions_with_background): | |
"""Calibrate predictions per class via 1-d linear interpolation. | |
Prediction scores are linearly interpolated with class-specific function | |
approximations. Note that after calibration, an anchor's class scores will | |
not necessarily sum to 1, and score ordering may change, depending on each | |
class' calibration parameters. | |
Args: | |
class_predictions_with_background: tf.float32 tensor of shape | |
[batch_size, num_anchors, num_classes + 1] containing scores on the | |
interval [0,1]. This is usually produced by a sigmoid or softmax layer | |
and the result of calling the `predict` method of a detection model. | |
Returns: | |
tf.float32 tensor of the same shape as the input with values on the | |
interval [0, 1]. | |
Raises: | |
KeyError: Calibration parameters are not present for a class. | |
""" | |
class_id_function_dict = _get_class_id_function_dict(calibration_config) | |
# Tensors are split by class and then recombined at the end to recover | |
# the input's original shape. If a class id does not have calibration | |
# parameters, it is left unchanged. | |
class_tensors = tf.unstack(class_predictions_with_background, axis=-1) | |
calibrated_class_tensors = [] | |
for class_id, class_tensor in enumerate(class_tensors): | |
flat_class_tensor = tf.reshape(class_tensor, shape=[-1]) | |
if class_id in class_id_function_dict: | |
output_tensor = _tf_linear_interp1d( | |
x_to_interpolate=flat_class_tensor, | |
fn_x=class_id_function_dict[class_id][0], | |
fn_y=class_id_function_dict[class_id][1]) | |
else: | |
tf.logging.info( | |
'Calibration parameters for class id `%d` not not found', | |
class_id) | |
output_tensor = flat_class_tensor | |
calibrated_class_tensors.append(output_tensor) | |
combined_calibrated_tensor = tf.stack(calibrated_class_tensors, axis=1) | |
input_shape = shape_utils.combined_static_and_dynamic_shape( | |
class_predictions_with_background) | |
calibrated_class_predictions_with_background = tf.reshape( | |
combined_calibrated_tensor, | |
shape=input_shape, | |
name='calibrate_scores') | |
return calibrated_class_predictions_with_background | |
elif (calibration_config.WhichOneof('calibrator') == | |
'temperature_scaling_calibration'): | |
def calibration_fn(class_predictions_with_background): | |
"""Calibrate predictions via temperature scaling. | |
Predictions logits scores are scaled by the temperature scaler. Note that | |
the 0-indexed background class is also transformed. | |
Args: | |
class_predictions_with_background: tf.float32 tensor of shape | |
[batch_size, num_anchors, num_classes + 1] containing logits scores. | |
This is usually produced before a sigmoid or softmax layer. | |
Returns: | |
tf.float32 tensor of the same shape as the input. | |
Raises: | |
ValueError: If temperature scaler is of incorrect value. | |
""" | |
scaler = calibration_config.temperature_scaling_calibration.scaler | |
if scaler <= 0: | |
raise ValueError('The scaler in temperature scaling must be positive.') | |
calibrated_class_predictions_with_background = tf.math.divide( | |
class_predictions_with_background, | |
scaler, | |
name='calibrate_score') | |
return calibrated_class_predictions_with_background | |
# TODO(zbeaver): Add sigmoid calibration. | |
else: | |
raise ValueError('No calibration builder defined for "Oneof" in ' | |
'calibration_config.') | |
return calibration_fn | |